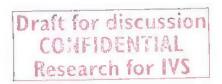


ISCOR VANDERBIJLPARK STEEL ENVIRONMENTAL MASTER PLAN SPECIALIST REPORT

SOLID WASTE DISPOSAL QUANTIFICATION AND CLASSIFICATION OF STREAMS WASTE SITE REQUIREMENTS

BY OCKIE FOURIE TOXICOLOGISTS

SERIES IV DOCUMENT IVS/SR/029 DECEMBER 2002



ISCOR VANDERBIJLPARK STEEL **ENVIRONMENTAL MASTER PLAN** SPECIALIST REPORT

SOLID WASTE DISPOSAL QUANTIFICATION AND CLASSIFICATION OF STREAMS WASTE SITE REQUIREMENTS

BY **OCKIE FOURIE TOXICOLOGISTS**

SERIES IV **DOCUMENT IVS/SR/029 DECEMBER 2002**

ENVIRONMENTALISTS TELL FORD AT CUSTA F DE

ISCOR VANDERBIJLPARK STEEL

ENVIRONMENTAL MASTER PLAN SPECIALIST REPORT

Solid Waste Disposal Quantification and Classification of Streams Waste Site Requirements

SERIES IV SPECIALIST REPORT IVS / SR / 029

DECEMBER 2002

Compiled by:

□ 73179

LYNNWOOD RIDGE

0040

Menlyn Square, East Block Cnr Gobie Street & Lois Ave Newlands, Pretoria 0081 South Africa/ Suid-Afrika

(012) 348-9732/7
Fax: (012) 348-7436
E-Mail: oft@global.co.za
Cell: 082 881 8065

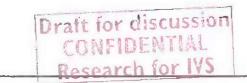

Draft for discussion CONFIDENTIAL Research for IVS

Table of Contents

				PAGE NUMBER
	EXE	CUTIVE SUMMARY		2
1.	INTR	ODUCTION		3
2.	CLAS	SSIFICATION METHODOLOGY	**********	6
	2.1	Impact and Risk Assessment/Rationale for Risk E	valuation	6
		2.1.1 Introduction	**********	6
		2.1.2 Ecological Risk Assessment		8
		2.1.3 Human Risk Assessment		10
3.	ANAI	YTICAL METHODOLOGY		11
4.	IDEN	TIFICATION AND SAMPLING OF WASTE STRE	AMS	11
5.	DISC	SUSSION OF RESULTS	**************	12
6.	CON	CLUSIONS		15
7.	REC	OMMENDATIONS		16
APPI	ENDIX	ES		
Appe	ndix A	Summary: Waste Characterization	Pa	ge 1 - 14
Appe	ndix B	Waste Stream Classification Tables (Inorganic)	Tables A-	1 to A-28
Appe	ndix C	Area (Hectare) Required for Disposal of IVS Solid Waste Calculations According to TOTAL LOAD PRINCIPLE – TCLP MOBILITY (INCLUDING SLAGS)	Т	able B-1
		Area (Hectare) Required for Disposal of IVS Solid Waste Calculations According to TOTAL LOAD PRINCIPLE – ACID RAIN (MONO DISPOSAL) (INCLUDING SLAGS)	Т	able B-2
		Area (Hectare) Required for Disposal of IVS Solid Waste Calculations According to TOTAL LOAD PRINCIPLE – TCLP MOBILITY (EXCLUDING SLAGS)		able C-1
		Area (Hectare) Required for Disposal of IVS Solid Waste Calculations According to TOTAL LOAD PRINCIPLE – ACID RAIN (MONO DISPOSAL) (EXCLUDING SLAGS)	Т	able C-2
Appe	ndix D	Laboratory Analysis	Inc	organic & Organic

EXECUTIVE SUMMARY

Classification of current waste streams generated by IVS, future air space requirements and associated potential risk quantification to the environment, was performed and investigated.

ISCOR Vanderbijlpark Steel activities result in approximately 2.2 million tons of solid residue annually, of which approximately 48% has to be disposed of in a residue landfill site. The to be disposed of residue mainly consists of 44% dusts, 53% slags and 3% dusts which according to mobility of contaminants, predominantly classifies as hazardous material to be disposed of in a hazardous waste site.

Results indicate a wide spectrum of inorganic contaminants present in residue to be generally responsible for the classification to be hazardous. However, risk quantification not only indicated manganese to be the contaminant of greatest concern to the environment, but also the compound which would determine air space, needed for disposal practices.

It was demonstrated that present untreated residue would require 1 480 hectare annually to conform with acceptable risk according to minimum requirements. It was also demonstrated that should slags be separately stockpiled for downstream uses and the dusts and sludges be treated for disposal in a General waste site, the air space requirements would drastically reduce to approximately 0.61 hectare annually.

It was strongly recommended to thoroughly investigate appropriate treatment technologies, due to such treatment generally being of a capital intensive nature, in parallel with perusal of alternative uses for stockpiled slags.

1. INTRODUCTION

Generation of waste, and hence waste disposal are anthropogenical activities. As such therefore, it could be argued that such activities should or could be avoided and banned. This kind of reasoning originated *inter alia* from the perception that waste constituents from man made activities must be more hazardous/harmful/toxic than natural constituents, due to the fact (perception) that natural could surely not be harmful! Very little could be more removed from the truth. It is true that many compounds, some being very potent, are being prepared synthetically, such as for example pesticide and pharmaceutical active ingredients, and could these compounds be termed anthropogenical. However, most of the hazardous wastes to contend with in our everyday life, orginates from nature, are ubiquitous in the environment, and are oftenly more hazardous and toxic/harmful to life than those synthetically (anthropogenically) prepared.

Two examples will suffice. It was estimated that only about 28 grams of botulinum toxin would be sufficient to destroy the entire population of the earth. Secondly, polynuclear aromatic hydrocarbons (PAH^s), some of them known to be potent human carcinogens, occurs naturally, are ubiquitous and very persistent in the environment, and is part and parcel of a daily dietary intake. It is thus a misconception than man-made chemicals must be more harmful than those that occur naturally. Similarly it is also a misconception than the normal, everyday hazardous wastes to contend with, are synthetically derived.

The term anthropogenical should therefore rather be directed to the **activity** in waste disposal, rather than the **origin** (natural *vs* man-made) of the to be disposed of material, considering that such material is generally from a natural nature. It follows therefore to be inevitable that the need to know about the **impact of anthropogenically introduced** chemicals in the environment will always be of paramount interest. Such knowledge is not only vital to those in industry, who carry the responsibility of the cradle-to-grave principle in their management of chemical substances, but also as vital to the Regulatory Authority who has the responsibility as custodian in making decisions involving environmental and human risks. Thus, it also follows that the aim should never be to ban the use of chemicals, but to exert reasonable controls when they are needed – something not possible if impacts cannot be predicted.

The management of hazardous waste remains one of the most important environmental matters throughout the industrial world. In this regard, the RSA has become inseparably linked to international policy through being a signotary of the Basel Convention for the transboundary movements of hazardous waste and their disposal. The Department of Water Affairs and Forestry (DWAF) is responsible for ensuring the correct management and disposal of waste in South Africa by issuing waste disposal site permits in terms of Section 20 of the Environment Conservation Act, 1989 (Act 73 of 1989).

In this regard DWAF produced/published a Waste Management Series in 1994 comprising of three documents, i.e.

- Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste:
- · Minimum Requirements for Waste Disposal by Landfill; and
- Minimum Requirements for the Monitoring of Water Quality at Waste Management Facilities.

The Minimum Requirements (MR) series provide the applicable waste management standards or specifications that must be met in the absence of any valid motivation to the contrary. They also provide a point of departure against which environmentally acceptable waste disposal practices can be distinguished from environmentally unacceptable waste disposal practices.

The objectives of setting Minimum Requirements were to:

- prevent water pollution and ensure sustained fitness for use of South Africa's water resources;
- attain and maintain minimum waste management standards in South Africa, so as to protect human health and the environment from possible harmful effects caused by the handling, treatment, storage and disposal of waste;
- effectively administer and provide a systematic and nationally uniform approach to the waste disposal process;
- endeavour to make South African waste management practices internationally acceptable.

Minimum Requirements are implemented through and enforced by a Landfill Site Permit, and includes important principles essential to hazardous waste management. Amongst others does the MR acknowledge that the Generator of waste is responsible for the fate of the generated waste, termed **Duty of Care**, which is in accordance with the cradle-to-grave principle. It also accommodates the precautionary principle by which it assumes that a waste or an identified contaminant of a waste is both highly hazardous until proven otherwise.

Perhaps the most important principle to Industry, is the polluter pays principle. In this regard the MR read as follows:

"The "polluter pays principle" holds that the person or organisation causing pollution is liable for any costs involved in cleaning it up or rehabilitating its effects. It is noted that the polluter will not always necessarily be the generator, as it is possible for responsibility for the safe handling, treatment or disposal of waste to pass from one competent contracting party to another. The polluter may therefore not be the generator, but could be a disposal site operator or a transporter. Through the 'duty of care' principle, however, the generator will always be one of the parties held accountable for the pollution caused by the waste. The generator must be able to prove that the transferal of management of the waste was a responsible action."

In conclusion with regard to standards or minimum requirements, is that of associated costs. The documents state that "MR makes allowance for the need to control costs in that

COMPIDENTAL

only crucial elements of the waste management process are regulated. The system of graded classification of Hazardous Waste set out in this document is specifically aimed at avoiding unnecessary expenditure without lowering standards. All new, approved or existing projects that generate Hazardous Waste should conform to a minimum standard of BPEO. The best Practicable Environmental Option (BPEO) is the outcome of a systematic consultative and decision-making procedure that emphasises the protection of the environment across land, air and water. It establishes, for a given set of objectives, the option that provides the most benefit or least damage to the environment as a whole at acceptable cost in the long term as well as the short term"

The Minimum Requirements for waste disposal follows a risk based approach. The aim is to curtail the risks associated with handling and disposal of waste to the point where they are acceptable to man and the environment. Thus, for a waste to be properly managed, its properties and potential risk to man and environment must be fully understood.

Risk implies a possibility. It refers to the possibility of injury, harm or any other adverse effect. It is firstly however important to realize that absolute safety or "no-risk" situations do not exist. Secondly on the other hand, it is of extreme importance to note specifically with regard to contamination and pollution matters, that the mere presence of a substance does not ipso facto imply a detrimental effect. Summation of these two "laws" result in the concept of Acceptable Risk, not only with regard to pharmacokinetics, but also universally recognized and applied in for example, regulatory control of contaminants.

The Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste sets out a systematic framework for identifying a Hazardous Waste and classifying it in accordance with the degree of risk that it poses. From the classification, requirements are set that will ensure hazardous waste is treated and safely disposed of. These requirements represent the lowest acceptable standard and are therefore termed Minimum Requirements.

The aim is to ensure the sustained fitness for use of South Africa's water resources and to protect both the public and the environment from harmful effects of incorrect waste management, without impairing essential economic development.

The ISCOR Vanderbijlpark Steel (IVS) Works is a conventional steel plant, which has been extensively modernized and expanded since its establishment in 1940-1945. In summary is fine ore sintered as a feed to blast furnaces, together with coarse ore, coke and minor additives. The blast furnace liquid iron is refined in basic oxygen furnaces to steel, which is cast into continuous slab. A further quantity of fine ore is pre-reduced with coal in rotary kilns as in mini plants. This is melted down in arc furnaces together with scrap steel, refined and cast into slabs. The steel slabs are milled to sheet, cleaned, etched and coated by tinning, painting or electrical hot dip galvanizing. A number of secondary activities, required to support the main steel making and finishing are also conducted on the site.

These activities results annually in approximately 2.2 million tons of solid residue, of which approximately 48% has to be disposed of in a residue landfill site. The approximate 1 million tons to be disposed of consists mainly of dusts (44%), sludges (3%) and slags

from the basic oxygen furnaces (53%). The coking and coal also produces tar and other organic products.

2. CLASSIFICATION METHODOLOGY

The Minimum Requirements (MR), as previously referred to, follows a risk based approach in the classification of waste streams to be disposed of, normally by landfill. In effect it is the application of a risk model by which exposure and effects of a contaminant, which may enter the environment, can be quantified according to a risk based approach. The rationale for such a risk evaluation is similar for all contaminants, whether they originate from material (waste) to be disposed of, or from any other source the environment and man is exposed to. A short summary describing the fundamentals of impact and risk assessment (applicable to the Minimum Requirements and good Toxicological Practices) is described elsewhere in the Master Plan Specialist Reports. For convenience to the reader of this Report, part of that discussion, and applicable to disposal of waste generated, will be reproduced as follows:

2.1 Impact and Risk Assessment/Rationale for Risk Evaluation

2.1.1 Introduction

Risk assessment is a complex process. It is a process, which endeavors to evaluate the possibility of harm to receptors caused by exposure to stressors. Very often risk assessment is run down by quoting the relationships "dose/response" and "exposure/effect" as being the end of it all. Although being the basis of pharmacokinetics, which could be described as the fundamentals of life, thorough cognisance has to be taken in risk assessment of other related fundamentals:

- Absolute safety does not exist
- No risk situations do not exist
- · There are only choices among risks
- The mere presence of a chemical substance does not ipso facto imply a detrimental effect
- When safety to any form of life is the objective, the only rational approach is through the nature of the toxicity in question, and the application of benefits versus potential hazards under the condition of intended use of the compound.

These quotes are very important when risk assessment methodology is to be designed to formulate protection, which amongst others, has to ensure that regulatory actions will be protective of human health and ecosystems. Whilst it is important not to underestimate risk to all forms of life, it is equally important to note that compounded conservatism tends to overestimate risk and thereby not only being overly protective of health, but indeed likely to harm health, for example with regard to essential trace elements such as chromium³⁺, iron and manganese. Thus, it is important not to muddle the much popular concept "precautionary principle" with over conservatism!

Risk assessment, both with regard to human health and the ecology, is primarily based on three steps. Should any one of these steps be absent, an evaluation of possible harm would not be feasible:

Release of contaminants, exposure conditions, fate and transport of pollutants, and contact between receptors and stressors, could all be termed the **Pathway** for exposure. Pathways determine whether a route of exposure would be direct or indirect, the result of which will provide a quantitative estimate of the risk posed by stressors. Direct pathways would be for example inhalation of atmospheric dispersed contaminants, and the ingestion of surface and ground waters to which contaminants were released. Indirect pathways could involve the total food chain for humans and the ecology alike.

In summary, the sources and pathways for a contaminant must be studied in great detail before biological effects can be related to exposure. Once this is done, the critical dose/response level can be established to ensure that adequate control exist to regulate the stressors in question.

The second step is the determination of potential adverse effects when exposed to contaminants. These evaluations are primarily based on toxicity information from laboratory toxicity studies in animals as well as results from epidemiological studies when available. Although some important pharmacokinetic differences do exist between animals such as rats and mice, and more importantly between animals and humans, is the principle of extrapolating from animal data to humans accepted in the scientific and regulatory community.

It is however very important to realize that generally all models used are simplification of reality. To use rodents as surrogates for humans, to extrapolate from high experimental doses to low environmental relevant doses, introduces uncertainty. To use indicator species such as for example certain fish species in dose/response assessments and extrapolate the results thereof to the aquatic environment, i.e. take in consideration the protection of more than one species, introduces uncertainties. Uncertainty factors, or safety factors are used in mathematical modeling to provide for these uncertainties, which results in health benchmarks used as single-point estimates, which again may have associated variabilities and uncertainties of up to an order of magnitude or more.

The importance of a full understanding of the above, lies in the fact (understandingly so) that risk assessment largely tends to favour conservatism, and is thus very likely to overstate actual risk and therefore being overly protective of human health and the ecology.

The third step in risk assessment is the quantification of exposure. Quantification of exposure could be termed the Estimated Environmental Concentration (EEC) being the magnitude and duration of exposure by the contaminants of concern, to receptors likely to be exposed or impacted on.

Quantification of exposure is normally based on either monitoring a specific situation or by modeling, i.e. predict a specific situation. Both these approaches suffer

uncertainties similar to the evaluation of potential adverse effects from animal toxicity studies. One of the major uncertainties in the monitoring approach is the reliance on analytical methods and associated detection limits, which could result in contaminants not being detected. Normally for risk assessment purposes such an event will be indicated by zero exposure, which could be problematic with for example, carcinogenic substances with a genotoxic mode of action (mechanism).

It is believed in some scientific circles that modeling is to be preferred above monitoring. Such a statement has to be questioned, in that exposure quantification and the accuracy thereof would certainly depend on, amongst others, pathway, media and sources. Modeled data depends on data (information) provided, assumptions and relationships chosen for a specific model. These factors are more than often very subjective, do not represent the environmental situation, and could result in large discrepancies in estimating or predicting exposure.

It is therefore to be accepted that both methods describing exposure for risk assessment purposes would contain advantages as well as disadvantages, and that the two methods could differ in resultant ambient contaminant concentrations for a specific pathway. Calculated, modeled or measured exposure may therefore differ from actual exposure, and for this reason the tendency is again to opt for maximum exposure scenarios, also termed Worst Case Scenario.

In summary, the three steps described i.e. ① pathway, ② evaluation of dose/response relationships and ③ quantification of exposure, are the basis for describing potential risk, incorporating assumptions, uncertainties, safety factors etc., in the formulations thereof. Whilst the utmost must be done and considered to ensure the most sound scientific basis possible, care should be taken in the interpretation of results with special reference to conservatism in estimating ecological and human risk.

2.1.2 Ecological Risk Assessment

Some contaminants, when released to the environment, do not have apparent direct effects on living organisms, but do so indirectly by changing the chemical characterization of their habitat or environment. Other contaminants do display a dose/response or exposure/effect relationship to living organisms, and these contaminants are often referred to as being "toxic".

The assessment of the probability that adverse effects will occur in the environment is being complicated by the existence of multiple pathways and thousands of vertebrate and invertebrate species, which ideally have to be considered in risk assessment. This is not possible. The only possible and feasible scenario would be the accomplishment of ambient concentrations of chemicals as ecological benchmarks which will not contribute to significant risk, and which will have to provide for the protection of more than one species. Such a scenario will depend on two cornerstones, one being that indicator species will have to be utilised in toxicity studies from which extrapolation to the total specific environment (i.e. aquatic environment) could

Research for IVS

be effectuated. Secondly, and most importantly, must the benchmark be an acceptable risk approach representing various species and trophic levels, which is also in line with the philosophy that no risk situations do not exist.

The departure point for a risk assessment of the environment, would be the decision or acceptance of the pathway to be followed. In this regard the aquatic pathway (ground or surface waters) is internationally accepted to be the more applicable due to its associated sensitivity. It could be stated, albeit with caution, that when the three environmental medias (air, land, water) is considered, that the aquatic pathway or route of exposure is the more appropriate to rely on for interpretation to the ecology.

As commonly known and referred to in paragraph 2.1, consists the risk assessment equation, of exposure on the one hand and effect on the other hand.

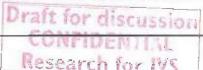
The exposure side is addressed by either measuring or monitoring of actual concentrations (dose) applicable, or by estimating the environmental concentration (EEC) by for example mass balance equations. Such models are normally "worst case scenarios" which on the one hand is conservative (and may be too conservative), but allows upper bound risk estimates. The most negative part of such worst case scenarios is the fact that these models do not provide for the fate and transport of the contaminant in the environment. For example do organic contaminants biodegrade (aerobic and anaerobic), or degrade through hydrolysis and photolysis to ultimately mineralize to CO₂, very often by relatively short biological and environmental half-lives and dissipation rates. Factors such as these mentioned may well give rise to over estimation of risk.

By relating known biological and ecological responses of known concentrations (dose) of a contaminant to actual or estimated environmental concentrations, it is possible to quantify possible risk to the environment. Dose/response data is to be obtained from controlled tests with selected indicator species. Indicator species are carefully chosen according to specific criteria such as for example demonstration over years of testing that the species is sensitive to known effects produced, and produces dose-response data to a variety of contaminants. Data must therefore be of a high quality from a significant number of species in the aquatic environment to be able to derive protective criteria extrapolated to "all" species in such an environment.

Sensitive toxicity endpoint data such as those derived from chronic toxicity testing, i.e. no-observed-effect levels, would be the most desired data for benchmark purposes. However, such data only exist for a small percentage of contaminants of concern, and would relatively speaking be more readily available for novel molecules than for those we are so familiar with. Values more readily available in the International literature, are acute LC₅₀ values which represents a 50% lethal concentration to a given indicator species. These acute toxicity levels, based on mortality (effect), are therefore to be

Draft for discussion
CONFIDENTIAL
Research for IVS

used to derive acceptable risk levels in an ecological risk assessment, the pathway being the aquatic environment.


In using the available and applicable LC_{50} values published in the open literature, a safety factor has to be adopted or implemented to provide a large margin of safety so as to make provision for inter-species variation and sensitivity, as well as for the fact that effect is based on mortality and not chronic effects. Because the slopes of dose/response curves of the effects of a contaminant on most aquatic species is unknown, a model was used (in this study) to express the quantitative risk for 1/10 the LC_{50} , and to calculate actual risk from the actual concentration measured in specific media (water, waste, sediment, etc.). The acceptable risk of 0,1 x LC_{50} is calculated from a cross section of typical dos/response data, with a typical slope of dose/response curves. From an exposure 10 times lower than the LC_{50} , approximately 0,00034% or one in a population of 300 000 exposed to the contaminant, is likely to die. Actual risk incorporating the concentrations of contaminants exposed to is quantified by the application of a Probit Model from which the severity of risk can be observed.

2.1.3 Human Risk Assessment

The broad philosophy for human risk assessment is very similar to ecological risk assessment. Both these philosophies aim at deriving dose/response information from which a dose could be calculated which would be unlikely to cause adverse health effects. Ecological risk assessment has the distinct advantage that, specifically with reference to site-specific studies, tests could be performed with the actual species of relevance, resulting in high confidence acceptable risk values. The equivalent to acceptable risk values, being Acceptable Daily Intakes (ADI) or Reference doses (Rfd) in human risk assessment, will always be derived from animal toxicity studies, although epidemiology studies in exposed human populations could make important contributions.

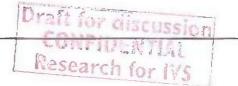
Dose/response information from animal studies for extrapolation to humans can only be done with high confidence if a full toxicological dossier has been followed in tests performed. Such a dossier would for example inter alia include physical/chemical properties, acute, sub-acute, sub-chronic oral, dermal and inhalation studies, teratogenic, embryotoxicity and fetotoxicity, two- generation reproduction, mutagenicity, chronic toxicity and carcinogenicity studies, pharmacokinetics, and a very large and comprehensive number of ecotoxicity and environmental fate studies. Such toxicity studies for one molecule could take up to 12 years of research, with associated costs, which could approach one billion American dollars.

Potential for human toxicity is, as mentioned, based on an approach, which assumes that laboratory animals are surrogates for human and other mammalian species. Acceptable daily intakes or References doses are determined from such tests for non-carcinogens, whilst Reference doses as well as oral slope factors and oral unit risk factors are used with administered

doses to estimate the probability of increased cancer incidences over a lifetime.

As previously indicated, is the pathway presently chosen by the Minimum Requirements to quantify risk, the aquatic environment, not only being very sensitive, but also the ultimate destiny (ground water) for contaminants mobile in wastes disposed of. Exposure is quantified incorporating a worst case scenario. The worst case scenario is based on the total load of a contaminant, disposed of per unit time (1 month) and unit area (1 hectare), to leach to a body of receiving water, and is expressed in parts per billion (ppb).

In the Republic of South Africa, disposal of waste has to conform to policies, rules and regulations, as layed down by the Department of Water Affairs and Forestry (DWAF). It is important to note that these "regulations" i.e. Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste, Minimum Requirements for Waste Disposal by Landfill, and Minimum Requirements for the Monitoring at Waste Management Facilities, has to date not been promulgated by Parliament. However, firstly will they be in the near future, and secondly, can waste only be disposed of in landfill sites permitted by DWAF, who uses the Minimum Requirements in their permitting procedures.


3. ANALYTICAL METHODOLOGY

The analysis, on which the classification methodology is based, is comprehensively prescribed by the minimum Requirement documents. In short it boils down to the total analysis (inorganic and organic if appropriate) of a waste to be discarded or disposed of. The risk analysis, classification and site designated for disposal, is derived from the total analysis, the concentration of a contaminant in the stream, the total volume of a stream and the area on which the waste has to be disposed of. The Minimum Requirements also provides for the delisting of a waste classified as hazardous, to be delisted to general waste quality, should a contaminant be immobile (not leachable). Such analytical tests are performed under worst case scenario by utilizing strong organic and inorganic acids to force leachability over a short period of time, should the contaminant contain mobility characteristics.

4. IDENTIFICATION AND SAMPLING OF WASTE STREAMS

The term solid waste, with reference to waste management and pollution control of the IVS Master Plan Study, refers to a (undesirable) by-product or residue from any process, to be discarded, accumulated or stored for the purpose of discarding or processing/recovering. Solid waste in the Master Plan excludes those wastes termed general wastes, normally represented by for example household and garden refuse, builders rubble and many other different commercial wastes. Solid wastes includes and refers specifically to material which may by circumstance of use, quantity, concentration or inherent toxicological, chemical or physical properties, cause adverse effects to man, fauna and flora, when improperly diposed of, stored or transported. These waste are

generally termed hazardous wastes (opposed to general wastes) and must "general waste" not be confused with hazardous waste, which could delist for disposal to a "General waste site".

Some 34 waste streams at IVS were investigated with regard to disposal by landfill. Most of these waste streams are currently disposed of on the existing dumpsite. However, some streams included in the investigation, such as for example sinter dust, blast furnace slag and basic oxygen furnace grid, are currently either recycled or being used in other industries (cement). They were included with the specific objective of characterization, should such material have to be disposed of for whatever reason.

Most organic material such as tars were not included because, with reference to disposal practices, their composition and hence classification is well known, and secondly due to IVS currently routing these materials to Holfontein for disposal in a H:H Site.

Twenty eight of the 34 waste streams investigated are reported on, the other streams omitted for the reasons mentioned. Only approximately 14% of the materials disposed of are currently weighed for accurate determination of volumes, others are either estimated or calculated. This is a very serious matter, which has to be addressed with urgency. Current classification and risk quantification should therefore be interpreted taking in consideration the lack of quantitative information on volumes. Similarly, must it also be acknowledged that calculations on future air space needed, may change once accurate volumetric quantification is available. Thus, volumes not only influence the hazard rating of a stream, but also determine the disposal area required and hence associated costs.

In conclusion, were all 28 streams reported on also analysed for possible contamination by organics. Contamination by organics assigns the analytical method to be employed in delisting (mobility) procedures, which may negatively impact on disposal practices, air space, risk and costs. Simultaneously were mobility tests also performed on all streams to simulate dedicated disposal practices, i.e. only IVS waste streams not contaminated with organics.

5. DISCUSSION OF RESULTS

Discussion of results will refer to 3 appendixes:

Appendix A: Summarises the classification of the streams, indicating the contaminants of concern, according to mobility, when a hazardous site is indicated. All streams investigated indicate to be hazardous according to their total analysis (composition). Contaminants of concern for total analysis is therefore not listed, but is available form Appendix B. Similarly, should a stream classifies not to be of a hazardous (H:H) nature according to its mobility characteristics, and hence disposal in a General (G) site, then it is obvious that no contaminants of concern can be indicated. Results are colour coded. Red indicates the concentration as well as exposure (estimated environmental concentration), which necessitates disposal in a H:H site, being of an extreme or highly hazardous nature. Blue indicates the concentration as well as exposure which necessitates disposal in a

<u>H:H or H:h site</u>, being of a low or moderately nature. **Green** indicates the waste stream to be of an acceptable risk for disposal in a <u>G Site</u>.

Results indicate all streams, except the following, to be disposed of in a hazardous waste site.

- Ladle furnace baghouse dust;
- BOF baghouse 1 dust; and
- Foundry cyclone dust.

In addition do another eight streams delist for disposal in a General waste site, should disposal be dedicated, i.e. not interfered with by disposal of waste not generated by IVS, and not disposed together with streams being contaminated with organic contaminants. Appendix A also summarises the contaminants in each stream responsible for classification as hazardous material, and hence disposal in a H:H or H:h site, according to mobility characteristics. The results indicate a wide spectrum of contaminants present to be generally responsible for the classification to be hazardous, specifically slags (BOF and EAF) and sludges (BF and BOF). Some of the dusts, which classifies being hazardous according to the TCLP mobility test, indicate to delist in dedicated disposal practices (AR mobility test), whilst only BF dust (Mn and F) and DR product dust (Mn, Zn,F) remains to be of a hazardous nature.

Thus, the four main observations from the Appendix A summary is that ① when classified under **dedicated disposal conditions** (AR mobility), the slags and sludges as well as BF and DR dust are mainly responsible for a hazardous classification, ② that these streams are also responsible for the larger volume to be disposed of, ③ that quite a number of streams delist under dedicated disposal conditions, and ④ that not one single contaminant is responsible for H classification, but rather a number of contaminants present.

Appendix B: Reproduces the total analysis, mobility tests and classification of each stream. More importantly reproduces this Appendix also the quantitative risk for those potent contaminants analysed for and present in each waste stream. It is to be noted that due to the complexity of waste streams and the resultant methodology used in the total analysis of solid waste streams, are the detection limits for all contaminants generally, and comparatively to mobility tests, very high. A worst case scenario is thus followed in the classification procedure and risk quantification by accepting the "smaller than" concentration to be the actual concentration of a contaminant present in the waste stream.

The results generally indicate that most of the contaminants present in the waste streams are immobile, indicating acceptable risk to the environment, and hence disposal in a General waste site. For those waste streams which remain to be classified as hazardous due to their mobility characteristics in dedicated disposal practices, risk quantification indicate manganese to be

Research for IVS

the contaminant of greatest concern, generally recording potential unacceptable risk of 100% mortality in the aquatic environment. This is specifically evident for EAF slag, BOF slag, BF sludge and BF dust. In this regard it is to be noted that the slags to be disposed of, is of a volume approximately 8 times larger than those of BF sludge and dust combined. This should be regarded important to note, specifically regarding the physical nature of slags *versus* sludges and dusts, when treatment of waste streams is to be considered.

Appendix C: Reproduces the results of an attempt to calculate the air space needed for waste streams to be disposed of by IVS, in a dedicated facility according to DWAF Minimum Requirements. The concentration of a contaminant and the total load principle determines the volume of waste which may be disposed of per unit area, conforming to an acceptable risk of one mortality in a population of 300 000 (aquatic route of exposure).

For this exercise, Tables B1, B2, C1 and C2 calculates the accumulative load on an annual basis for H and G classified material, for the contaminants aluminium, barium, cadmium, iron, lead, manganese, zinc and fluorides. These eight contaminants were selected being the compounds of concern according to their abundancy by mobility characteristics of the waste streams. Although dedicated disposal requires only Acid Rain mobility tests (no organics present), was the exercise also conducted for TCLP mobility, for the sake of comparison.

Table B1 indicates that iron is the contaminant in the waste streams, which would be disposed of annually, in the largest quantity according to TCLP mobility. However, manganese is a much more potent contaminant than iron (454g Mn vs 13 636g Fe), and would manganese thus be the contaminant which would determine the quantity to be disposed of per hectare per year. According to manganese all the streams disposed of would therefore need air space of 1 480 ha/year, or 29 600 ha/20 years for the disposal of untreated material. This must be regarded not feasible.

<u>Table B2</u> follows the scenario of mobility as indicated by Acid Rain extractions, the scenario to be followed when organics are not present in the waste streams to be disposed of. Manganese indicate that 41 hectares would be needed annually to dispose of the untreated IVS waste streams, being 820 hectares over a 20 year period. This should also be regarded as not feasible.

Table C1 and Table C2 follow a scenario when disposal of slags are discontinued. It was indicated in the text that slags (BOF and EAF) account for nearly 50% of the volumes annually to be disposed of. This material may well be of use in for example the manufacture of bricks or as road aggregate. Thus, should slags be for example be stock-piled on approved footprints, incorporating the necessary leachate control measures, would not only the volume of waste to dispose of annually decrease drastically, but also any associated potential risk to man and the environment.

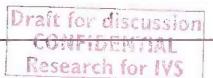
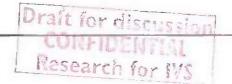


Table C1 indicates the result of TCLP mobility when disposal of slags are discontinued. It indicates that according to manganese present, 295 hectares would be required annually, in comparison with the 1 480 hectare needed when slags are also to be disposed of. This is understandable considering the huge volumes of BOF and EAF slags, as well as the concentrations of manganese leached by the TCLP mobility methodology. However, 295 hectares annually would still result in some 5 900 hectares needed of a period of 20 years, which should also be regarded as not feasible.

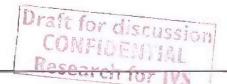
Table C2 indicates a much more acceptable result. It indicates that should slags be discontinued from disposal, and mobility tests for dedicated disposal practices applied, that 11.8 hectares (manganese) would be required by IVS annually. Such a result must not be underestimated. This result not only indicates that much less footprint, (and hence costs) would be required but also implies that potential risk to the environment (and man) should decrease noticeably. However, although much more acceptable from a risk and cost point of view, should 11.8 hectares/year, and hence 236 hectares/20 years also regarded to be at least not ideal, even if regarded feasible under specific conditions.


The results of the disposal of untreated material, as depicted and discussed, strongly suggest that appropriate treatment should be considered. Not only would treatment to the point where all streams would classify to G material be much more acceptable from a potential risk point of view, but would much less footprint or air space be needed. Most if not all inorganic contaminants could be treated to leachable concentrations less than approximately 10 ppb and/or less than the detection limits by which they can be identified and/or quantified. This also holds true for manganese, which is the contaminant in the IVS waste streams, dictating the risk as well as air space needed for disposal at IVS.

Such a "treatment scenario" was tested by the calculation of air space needed should all hazardous waste streams according to Acid Rain mobility (Table C2), leach manganese at 0.1 ppm concentrations or less. Experience indicates such a scenario to be realistic, although it would or could be more difficult for some material than others. Should this scenario be applied than the total manganese for all streams of Table C2 would amount to 27 754 grams to be disposed of annually, and hence 0.61 hectares required annually or 12.2 hectare over a period of 20 years.

6. CONCLUSIONS

It is to be concluded from the IVS solid waste disposal quantification and classification study, that disposal of current **untreated waste** in a future approved dedicated disposal facility, is neither from a potential risk to man and environment, nor from an air space and costs point of view, feasible.

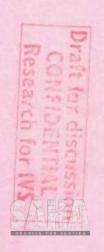

7. RECOMMENDATIONS

The following recommendations should be considered:

- 1. Waste streams which are currently being disposed of, should as a matter of urgency be quantified by utilising the weighbridge. All streams should be weighed separately.
- 2. Slag material should be considered to be stockpiled on an approved footprint with approved pollution control measures in the CRMF area.
- 3. Recycling, minimization and perusal of alternative uses for slags should be a high ongoing priority.
- 4. Appropriate treatment technologies to treat and hence delist all hazardous waste streams to General waste, should be investigated in parallel to (3). Normally chemical treatment of hazardous waste is capital intensive, and would it be advisable to regard perusal of alternative uses for slags, and treatment of others (dusts, sludges, etc.), as opportune.

Dr H O Fourie

OCKIE FOURIE TOXICOLOGISTS

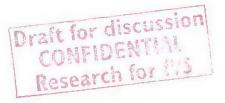


Appendixes

SOLID WASTE DISPOSAL QUANTIFICATION AND CLASSIFICATION OF STREAMS WASTE SITE REQUIREMENTS

[Iscor Vanderbijlpark Steel]

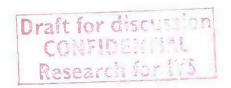
Appendix A	Summary: Waste Characterization	Page 1 to 14
Appendix B	Waste Stream Classification Tables (Inorganic)	Tables A-1 to A-28
Appendix C	Area (Hectare) Required for Disposal of Iscor Vanderbijlpark Steel Solid Waste Calculations According to TOTAL LOAD PRINCIPLE – TCLP MOBILITY (INCLUDING SLAGS)	Table B-1
	Area (Hectare) Required for Disposal of Iscor Vanderbijlpark Steel Solid Waste Calculations According to TOTAL LOAD PRINCIPLE – ACID RAIN (MONO DISPOSAL) (INCLUDING SLAGS)	Table B-2
	Area (Hectare) Required for Disposal of Iscor Vanderbijlpark Steel Solid Waste Calculations According to TOTAL LOAD PRINCIPLE – TCLP MOBILITY (EXCLUDING SLAGS)	Table C-1
	Area (Hectare) Required for Disposal of Iscor Vanderbijlpark Steel Solid Waste Calculations According to TOTAL LOAD PRINCIPLE – ACID RAIN (MONO DISPOSAL) (EXCLUDING SLACE)	Table C 2
Appendix D	(MONO DISPOSAL) (EXCLUDING SLAGS) Laboratory Analysis	



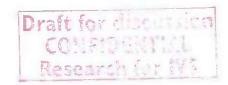
APPENDIX A

SUMMARY: WASTE CHARACTERIZATION

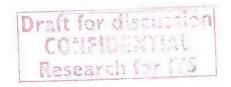
PAGE 1 - 14



	Accep-	1 9	DETAILS OF WA	STE STREAM						CHAR	ACTERI	STICS OF WASTES						
	table	57	DETAILS OF WA	TOTE STREAM		F	HYSICA	L.				CHI	EMICAL					
	Risk	4		AOF	UME				ORGANI	C (PAH)	a voc ^s)		INC	DRGANI	C (Micro's			
	Value				ER				_	P EXTRA		TOTAL AND SIS		EXTRA			N EXTRA	
COM-	(MR)	STREAM	NAME/	YEAR	MONTH				La	b Conc.		Lab Conc.	Lab	Conc.	EEC	La	ab Cons	EEC
DUND	ppb	NUMBER	DESCRIPTION	Kilogram	Kilogram	SLUDGE	SOLID	OTHER		ppm	ppb	ppb		ppm	Mpp		ppm	ppla
Al	10000	¥.	BOF SLAG (FINE)		35,000,000		X		BDL			Ref: Table A-1	Al	3.0	69300	Al	0.52	1201
As	430												Ва	0.42	9702	Fe	0.50	1155
Ва	7800												Fe	0.51	11781	Mn	1.2	2772
Cd	31												Pb	0.03	693	Zn	0.96	2217
Co	6900	- 2											Mn	0.10	2310	F-	0.5	1155
Cr3+	4700	1/6											Se	0.02	462			
Cu	100	#											V	0.11	2541			
Fe	9000												F-	2.0				
Pb	100		10/10		CLASSIFICATI	ON OVER	1ha Hill	/ H:h / G				H:H SITE		H:H SI			H:H SIT	E
Mn	300		-			TO ENVIR						RISK		RISK			RISK	
Hg	22	2.	BOF SLAG (COURSE)	1	35,000,000		χ		BOL			Ref: Table A-2	Al	2.5	57750	Ba	0.42	970
Ni	1140												Ba	2.4	55440	Fe	0.68	1570
Se	260												Fe	169	3903900	Mn	2.5	5775
Ag	2000												Pb	0.08	1848	V	0.07	161
Ti	731												Mn	110	2541000	F.	0.3	693
V	1300												V	0.07	1617			
Zn	700							1					Zn	0.08	1848			
F.	1500												F-	3.0				
	300			1	CLASSIFICAT	ION OVER	Tha H:H	1 / H:h / G				H:H SITE	-	H:H SI			H:H SIT	Œ
A A						TO ENVIR						RISK		RISK			RISK	

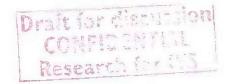


	DETAILS OF WAST	E STREAM						CHARA	CTERIST	TICS OF WASTE STR						
				F	PHYSICAL					CHEN						
		VOLU						NIC (PAHS &					C (Micro's			
		PER					1	CLP EXTRAC		TOTAL ANALYSIS		PEXTRA			VEXTRA	
STREAM NUMBER	NAME/ DESCRIPTION	YEAR Kilogram	MONTH Kilogram	SLUDGE	SOLID	OTHER		Lab Conc.	EEC ppb	Lab Conc. ppb	La	ppm	EEC ppb		ppm	EEC ppb
	DESULPHURISATION SLAG	, and grain	3,600,000	024002	Х	0111111	BDL		Phi	Ref: Table A-3	win	0.24	570	F.,	1.7	4039
											F.	8.0	19008			
			CI ACCITICA	TION OVE	D the Hol					Huarr		Huar			N. C.T.	
			CLASSIFICA							H:H SITE		H:H SIT	t l		H:h SITI	E
			RIS	K TO ENVI	RONMEN	T: R / AR				RISK		RISK			RISK	
4.	BOF SLAG (UNPROCESSED)		35,000,000		Х		BDL	1		Ref: Table A-4	Al	1.5	34650	Mn	0.37	8547
											Cd	0.08	1848	V	0.07	1617
											Fe	0.40	9240	F-	0.1	2310
											Mn	0.12	2772			
											Se	0.03	693			
											V	0.11	2541			
											F-	1.0	23100			
			CLASSIFICA	TION OVE	 R 1ha H:F	 				H:H SITE		H:H SIT	E		H:H SIT	E
				K TO ENVI						RISK		RISK			RISK	

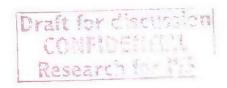


	DETAILS OF WAS	TE STREAM						CHARA	CTERIST	ICS OF WASTE STR	EAM			
	DETAILS OF WAS	TE STILLIN		F	PHYSICAL					CHEM	ICAL			
		VOL	UME				ORGA	NIC (PAHS &	VOC ^s)		INORGAN	C (Micro's	5)	
		P	R					CLP EXTRAC		TOTAL ANALYSIS	TELP EXTRA	CTION	A/RAIN EXTR	ACTION
STREAM	NAME/	YEAR	MONTH					Lab Conc.	EEC	Lab Conc.	Lab Conc.	EEC	Lab Conc.	EEC
NUMBER	DESCRIPTION	Kilogram	Kilogram	SLUDGE	SOLID	OTHER		ppm	ppb	ppb	ppm	ppb	ppm	ppb
5.	EAF BAGHOUSE DUST		1,500,000		X	(Dust)	BDL			Ref: Table A-5	Cd 0.11, Mn 37 Zn 51 F- 13	108 36630 50490 12870	Ref: Table	A-5
			CLASSIFICA	TION OVE	R 1ha H:F	H:h G	-			H:H SITE	H:H SI	TE.	G SITE	~
				K TO ENVI						RISK	RISK		ACCEPTABL	E RISK
₹.	LADLE FURNACE 1&2 BAGHOUSE DUST		10,000		X	(Dust)	BDL			Ref: Table A-6	Ref: Table	A-6	Ref: Table	A-6
			CLASSIFICA	TION OVE	R 1ha H:	H:h G				H:H SITE	6 SIT	E	G SIT	=
				K TO ENV						RISIC	ACCEPTABL	E RISK	ACCEPTABL	E RISK

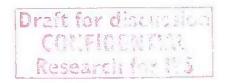
	DETAILS OF WAS	TE STREAM			NIVALO III			CHARA	CTERIST	ICS OF WASTE STRI				
	<u> </u>			ŀ	HYSICAL					CHEM				
		VOLUM PER						NIC (PAH ⁸ &		TOTAL ANALYSIS	TOLP EXTE	NIC (Micro's	AJRAIN EXTRI	ACTION
STREAM NUMBER	NAME/ DESCRIPTION	YEAR Kilogram	MONTH Kilogram	SLUDGE	SOLID	OTHER		Lah Conc. ppm	EEC ppb	Lab Conc. ppb	Lab Cone	EEC ppb	Lab Conc.	EEC ppb
7.	BOF BAGHOUSE 2 OUST		200,000		Х	(Dust)	BDL			Ref: Table A-1	F- 2	2640	Ref: Table	A-7
			CLASSIFICA	TION OVE	R 1ha H:F	/ H:h / G				H:H SITE	H:h S	ITE	6 SITE	
				K TO ENVI						RISK	RIS		ACCEPTABL	Et distance
8.	BOF BAGHOUSE 3 DUST		100,000		X	(Dust)	BDL			Ref: Table A-8	Cd 0.1 Man 4 Zn 12	2 2772	Ref: Table	A-8
	1		CLASSIFICA	TION OVE	R 1ha H:1	H:h/G		1117777		H:H SITE	H:H S	ITE	G SITE	
			RIS	K TO ENV	RONMEN	T: R / AR				RISK	RIS	К	ACCEPTABL	E RISK



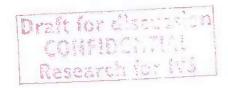
	DETAILS OF WAS	TE STREAM						CHARA	CTERIST	ICS OF WASTE STRE				
	OLINICO UI TENO	TE STILLAN		F	HYSICAL					CHEM	ICAL			
		AOTUM	E				ORGA	NIC (PAH ^s &	VOC ^s)		INORGANIC (I	Vlicro's)	
		PER					T	CLP EXTRAC	T	TOTAL ANALYSIS	TCLP EXTRACT	ION	AIRAIN EXTRA	CTION
STREAM	NAME/	YEAR	MONTH					Lab Conc.	EEC	Lab Conc.	Lab Conc.	EEC	Lab Conc.	EEC
NUMBER	DESCRIPTION	Kilogram	Kilogram	SŁUDGE	SOLID	OTHER		pam	ppb	ррь	ppm	ppb	pam	ppb
<u>ų.</u>	BOF BAGHOUSE 1 DUST		100,000		х	(Dust)	80L			Ref: Table A-9	Ref: Table A.S		Ref: Table	A-9
			CLASSIFICA RIS	TION OVE						H:H SITE RISK	G SITE ACCEPTABLE R	ISK	G SITE	
	CONTINEOUS CASTER V3 SLUDGE		31,000	Х			BOL			Ref: Table A-10	Cd 0.20 Fe 931	4.09 19048	Ref: Table	4-10
		(CLASSIFICA	TION OVE	R 1ha H:	1 H:h G				H:H SITE	H:h SITE		G SITE	
				K TO ENVI						RISK	RISK		ACCEPTABLE	E RISK



	DETAILS OF WAS	RTE STREAM						CHARA	CTERIST	ICS OF WASTE STRI				
	DETRIES OF TAX	TE STILLAR		F	HYSICAL					CHEM	ICAL			
		VOLUMI	E					IIC (PAH ^s &			INORGANIC			
		PER				[TE	LP EXTRAC		TOTAL ANALYSIS	TELPEXIDAG		AJRAIN EXTRA	
STREAM Number	NAME) DESCRIPTION	YEAR Kilogram	MONTH Kilogram	SLUDGE	SOLID	OTHER		Lab Conc. ppm	EEC ppb	Lab Conc. ppb	Lab Conc. ppm	EEC ppb	Lab Conc. ppm	EEC ppb
11.	SINTER AG 100 DUST		20,000		X	(Dust)	BDL	The state of the s		Ref: Table A-11	Ref: Table A	·11	Ref: Table i	A-11
									NOTE: T	OTALLY RECYCLE	D TO THE SINT	ER PLA	 	
		C	LASSIFICA	TION OVE	R 1ha H:t	/ Hth / G				H:H SITE	G SITE		G SITE	
			RIS	K TO ENVI	RONMEN	T: B / AR				RISIC	ACCEPTABLE	RISI	ACCEPTABL	E RISK
12.	SINTER BG 100 DUST		20,000		Х	(Dust)	BDL			Ref: Table A-12	Ref: Table A	-12	Ref: Table	A-12
								44.00	NOTE: 1	FOTALLY RECYCLE	D TO THE SINT	ER PLA	NT 	
		C	LASSIFICA	TION OVE	R 1ha H:H					H:H SITE	GSITE		G SITE	
				K TO ENVI						RISK	ACCEPTABLE	RISK	ACCEPTABL	E RISK



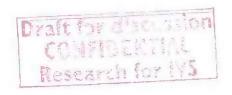
	DETAILS OF WAS	TE STREAM						CHARA	CTERIST	ICS OF WASTE STR	EAM				
	DETAILS OF WAS	III SIIIEAN		F	PHYSICAL					CHEN	HCAL				
		VOL	UME				ORGA	NIC (PAH [®] &	VOCS)		IN	DRGANIC	(Micro's)	•
		P	ER					CLP EXTRAC		TOTAL ANALYSIS		EXTRAC		A/RAIN EXTR	ACTION
STREAM	NAME/	YEAR	MONTH					Lab Conc.	EEC	Lab Conc.	Lal	Conc.	EEC	Lab Conc.	
NUMBER	DESCRIPTION	Kilogram	Kilogram	SLUDGE	SOLID	DTHER		ppm	ppb	ppb		ppm	ppb	ppm	ppb
13,	SINTER CG 100 DUST		30,000		X	(Dust)	BDL			Ref: Table A-13	ให้ก	22	436	Ref: Table	A-13
									NOTE:	 TOTALLY RECYCLE 	D TO T	HE SINT	TER PLAI	NT	
			CLASSIFICA	TION OVE	R 1ha H:H	/ H:h / G				H:H SITE		H:H SITE		H:h SIT	E
				K TO ENVI						RISK		RISK		RISK	
14.	BF C DUST		3,800,000		Х	(Dust)	BDL			Ref: Table A-14	Ph	0.06	150	Ref: Table	A-14
			CLASSIFICA	TION OVE	R 1ha H:F					H:H SITE		H:H SITI	<u> </u>	G SITI	



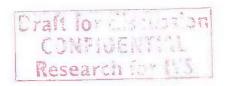
	DETAILS OF WAS	STE STREAM						CHARA	CTERIST	ICS OF WASTE STR						
	DETAILS OF WAS	TE STILLANI		F	HYSICAL					CHEN	MICAL					
		VOL	UME				ORGA	NIC (PAH ^s &	VOCs)		10	VORGANI	C (Micro's			
		Р	ER			ĺ	Ī	LP EXTRAC	Ţ	TOTAL ANALYSIS	TCL	PEXTRA		AJRAI	N EXTRA	
STREAM	NAME/	YEAR	MONTH	OL UDOE	OOLID	OTHER		Lab Conc.	EEC	Lab Conc.	La	ab Conc.	EEC	La	b Conc.	EEC
NUMBER	DESCRIPTION	Kilogram	Kilogram	SLUDGE	SOLID	OTHER		ppm	ppb	ррь		ppm	ppb	50.0	bbm	ppb
15.	BF D DUST		3,800,000		Х	(Dust)	BDL			Ref: Table A-15	Al	7.3	18308	in	4.9	12289
											Pb	0.08	201	F-	3.9	9781
											Mn	24	60192			
											Zn	5.7	14296			
											F.	2.0	5016			
			CLASSIFICA	TION OVE	R 1ha H:l	1 Fish / G				H:H SITE		H:H SIT	E.		H:H SIT	E
			RIS	K TO ENVI	RONMEN	T: R AR				BISIC		RISK			RISK	
16.	BF SLUDGE		2,440,000	Х			BDL			Ref: Table A-16	Al	45	72468	Mn	10	1610
											Cd	0.06	97	Zn	3.2	515
											Fe	29	46702	F-	7.9	12722
											Pb	1.5	2416			
						1					Mn	65	104676		1	
											Zn	163	262495			
			CLASSIFICA	TION OVE	R 1ha H:	1 / H:h / G				H:H SITE		H:H SIT	E		H:H SIT	E
			RIS	K TO ENVI	RONMEN	T: B / AR				RISK		RISK			RISK	

	DETAILS OF WASTE	STREAM						CHARA	CTERIST	ICS OF WASTE STR	EAM	• "				
	DETAILS OF WASTE	OTHERM		F	PHYSICAL					CHEN	MICAL					
		VOL	UME				ORGA	NIC (PAH ^s &	VOCs)		II	NORGANI	C (Micro's	:)		
		PI				ŀ	T	CLP EXTRAC	T	TOTAL ANALYSIS	TCL	PEXTRA	CTION	AJRA	AIN EXTR	ACTION
STREAM	NAME/	YEAR	MONTH					Lab Conc.	EEC	Lab Conc.	Li	ab Conc.	EEC	L	ab Conc.	EEC
NUMBER	DESCRIPTION	Kilogram	Kilogram	SLUDGE	SOLID	OTHER		ppm	ppb	ppb		ppm	ppb		ppm	ppb
17.	BF PRIME GRANULATED SLAG		21,700,000		Х		BDL			Ref: Table A-17	Al	27	386694	Fe	10	143220
			100								Ba	3.5	50127	Mn	1.4	20051
											Fe	83	1188726	F-	0.9	12890
											РЬ	0.05	716			
											Me	36	515592		İ	
											Ti	0.09	1289			
											Zn	0.23	3294		į	
											F-	0.2	2864			
			CLASSIFICA							H:H SITE		H:H SIT	E		H:H SIT	E
			RIS	K TO ENVI	RONMEN	T: R / AR				RISK		RISK			RISK	
18.	BF OFF GRADE		21,700,000		Х		BDL			Ref: Table A-18	Al	22	315084	Fe	2.7	38669
	GRANULATED SLAG										Ba	1.2	17186	Mn	1.1	15754
											Fe	12	171864	Zn	0.05	716
											Mn	7.8			0.8	
-											Ti	0.18	2578		0.0	17100
											Zn	0.10	1432			
												0.2	2864			
			CLASSIFICA	TION OVE	R 1ha H:F	/ H:h / G				H:H SITE		H:H SIT	E		H:H SIT	E
			RIS	K TO ENVI	RONMEN	T: B / AB				RISK		RISK			RISK	

	DETAILS OF WAST	E STREAM						CHARAC	CTERIST	ICS OF WASTE STR						
	DETAILS OF WAST	E 31 HEARN			PHYSICAL					CHEN	HCAL					
		AOTA	ME				ORGA	NIC (PAH [®] &	VOC*)		II	VORGANI	C (Micro's			
		PE					T	CLP EXTRAC	T	TOTAL ANALYSIS	701	P EXTRA	C HOM	AJRAI	N EXTRA	CTION
STREAM	NAME/	YEAR	MONTH					Lab Conc.	EEC	Lab Conc.	Li	ab Conc.	EEC	La	b Conc	EEC
NUMBER	DESCRIPTION	Kilogram	Kilogram	SLUDGE	SOLID	OTHER		ppm	ppb	ppb		ppm ;	ppb		ppm	ppb
19.	DR PRODUCT DUST	1	27,000,000		Х	(Dust)	BDL			Ref: Table A-19	Al	2.5	44550	Min	0.04	71
		1 1									Ba	0.49	8732	Zn	0.06	106
		1									Mn	23	409860	F-	0.4	712
											Zn	0.08	1426			
											F-	0.3	5346			
			CLASSIFICA	TION OVE	R 1ha H:l	/ / H:h / G				H:H SITE		H:H SIT	E	-	H:H SITI	E.
			RIS	K TO ENVI	RONMEN	T: B / AB				RISI(RISIC			RISK	
20.	OR WET SCRUBBER MUD		97,000			(Mud)	BDL			Ref: Table A-20	Mn	4.9	314	Re	ef: Table A	l·20
	-		CLASSIFICA	TION OVE						H:H SITE RISK		H:H SIT	E		G SITE	



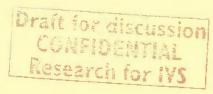
DETAILS OF WASTE STREAM					CHARACTERISTICS OF WASTE STREAM												
					PHYSICAL			CHEMICAL									
STREAM NUMBER		VOLUME PER					ORGAI		18	IORGANI	C (Micro's						
	NAME!						TOLP EXTRACT			TOTAL ANALYSIS	TOLP EXTRACTION			AIRAIN EXTRACTION			
		YEAR	MONTH	SLUDGE	SOLID	OTHER	Lab Conc.		EEC	Lab Conc.	Lab Conc.		EEC	Lab Conc	EEC		
	DESCRIPTION	Kilogram	Kilogram					ppm	bāp	ppb		ppm	ppb	ppm	ppb		
21.	EAF SLAG		10,500,000		Х		BDI.			Ref: Table A-21	Al	36	249480	Mn 2.2	15246		
											Ba	1.3	9009				
		1						1			Fe	16	110880				
											Pla	0.08	416				
											Mn	60	415800				
											Ti	0.12	832				
			CI AGGIEICA	TION OVE	R 1ha H-i	11M-P1C				H:H SITE		H:H SIT	TE.	H:H SI	TF		
CLASSIFICATION OVER 1ha H:H / H:h / G RISK TO ENVIRONMENT: R / AR												RISI		RISK			
	-		KIS	KIUENV	KUNIVIES	IE: B [AB		1		RISK		NI91/					
22.	FOUNDRY CYCLONE OUST		4,000		Х	(Dust)	8DL			Ref: Table A-22	Ref: Table A-22		Ref: Table	A-22			
								Mary many Attacks									
															E .		
CLASSIFICATION OVER 1ha H:H / H:h / G										H:H SITE		G SIT	E	G SIT	TE		
				RISK ACCEPTABLE RISK ACC			ACCEPTAB	ACCEPTABLE RISK									

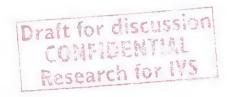

DETAILS OF WASTE STREAM					CHARACTERISTICS OF WASTE STREAM																
					PHYSICAL		CHEMICAL														
		VOLUME PER					ORGA	NIC (PAH ^s &	VOC*}		El	VORGANI	C (Micro's								
							TOUP EXTRACT			TOTAL ANALYSIS	TOUR EXTRACTION			A/RAIN EXTRACTION							
STREAM NUMBER			MONTH	SLUDGE	SOLID	OTHER	Lab Conc. EEC ppm ppb		EEC	Lab Conc. ppb	Lab Conc. El		EEC	Lab Conc. EEC		EEC					
			Kilogram						ppb			ppm ppb			ppm	ppb					
23.	BOF GRID		459,000		Х		BDL			Ref: Table A-23	Cd	0.13	39.4	Ref	: Table A	-23					
											Fe	1210	366557								
											Mn	82	24841								
											10011	02	24041								
															Į.						
										NOTE: TOTALLY RECYCLED											
	CLASSIFICATION OVER tha H:H / H:h / G								H:H SITE	H:H SITE H:H SITE			G SITE								
			RIS	K TO ENVI	RONMEN	T: R / AR			Ŷ	RISK		RISK		ACCE	PTABLE	RISK					
24.	DR RAW MATERIAL DUST,		26,000,000		Х	(Dust)	BDL	1		Ref: Table A-24	Al	4.0	68640	Ma	1.1	18876					
	FURNACE DUST &		20,000,000		_ ^	10001,	001			1011 10010 11 11 1	Ba	1.0	17160		0.1	1716					
	SEPARTION DUST										Fe	4.0	68640	1.	0.1	17.45					
	SEPARTIUN DOST									1 1											
											Mn	19	326040		ŀ						
											Zn	0.30	5148		}						
			CLASSIFICA	TION OVE	R 1ha H:F	1 / H:h / G				H:H SITE		H:H SIT	E		H:H SIT	E					
				K TO ENVI						RISK		RISK			RISK						

SUMMARY: WASTE CHARACTERIZATION

	DETAILS OF WAS	TE OTDEAM				CHARAI	CTERIST	TICS OF WASTE STR	EAM			
	DETAILS OF WAS	DIE STREMIN		PHYSICAL				CHEM	ICAL			
		VOLUME				DRGANIC (PAH ^s & \	VDC ^s)		INDRGANI	C (Micro's	s)	
		PER				TCLP EXTRACT	1	TOTAL ANALYSIS	TOLP EXTRA		A/RAIN EXTRA	CTION
STREAM NUMBER	NAME/ DESCRIPTION	YEAR MONT Kilogram Kilogra		SOLID	OTHER	Lab Conc.	EEC ppb	Lab Conc. ppb	Lab Conc. ppm	EEC ppb	Lab Conc.	EEC ppb
25.	VAALDAM SLUDGE	2,000	X 000,			Ref: Analytical Rep SGS Lab Not Accred		Ref: Table A-25	Mn 0.61	805	Ref: Table A	-25
		CLASSII	ICATION OVE	R 1ha H:H	/ H:h / G			H:H SITE	H:H SIT	E	G SITE	
			RISK TO ENVI					RISK	RISK		ACCEPTABLE	RIST
26.	DOLOCHAR -1mm	1,500	000,	X		Ref: Analytical Rep SGS Lab Not Accres		Ref: Table A-26	Fe 39 Mn 15	38610 14850	Ref: Table A	26
		CLASSII	ICATION OVE	R 1ha H:H	/ H:h / G	H:H SITE		H:H SITE	H:H SIT	E	6 SITE	
			RISK TO ENVI	RONMEN	T: R / AB	RISK		RISIC	RISIC		ACCEPTABLE	MSK

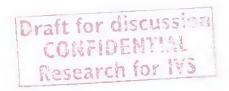
SUMMARY: WASTE CHARACTERIZATION


	DETAILS OF WAS	RTF STRFAM				CHARACTE	RISTICS OF WASTE ST					
	DETRIED OF TRAC	TE OTHERM	Р	HYSICAL			CHE	MICAL				
		VOLUME				ORGANIC (PAHS & VOCS	i)	[[VORGANI	C (Micro's	s)	
		PER				TOLP EXTRAGT	TOTAL ANALYSIS		PEXTHA		AJRAIN EXTR	
STREAM NUMBER	NAME/ DESCRIPTION	YEAR MONTH Kilogram Kilogram	SLUDGE	SOLID	OTHER	AR ppn pp		L	ab Conc.	EEC ppb	Lab Conc. ppm	EEC ppb
27.	DOLOCHAR + 1mm	9,000,000		X		Ref: Analytical Report SGS Lab Not Accredited	Ref: Table A-27	Al Pb Min Se	2.9 0.02 0.12 0.07	17226 119 713 416	Ref: Table	A-27
		CLASSIFICA	TION OVER	Tha H:H	/ H:h G		H:H SITE		H:H		G SITE	
		RISI	TO ENVIR	RONMEN	T: R / AR		RISK		RISK		ACCEPTABL	E RISK
28,	BOF SLUDGE (MUD)	3,000,000			(MUD)	Ref: Analytical Report SGS Lab Not Accredited	Ref: Table A-28	Cd Fe Mn Zn F-	0.05 629 54 1.0 2.7	99 1245420 106920 1980 5346	F- 3,5	693
		CLASSIFICA	TION OVER	1 1ha H:H	/ H:h / G		H:H SITE		H:H SIT	E	H:h SIT	E
			(TO ENVIR				RISK		RISK		RISIC	



APPENDIX B

WASTE STREAM CLASSIFICATION TABLES (INORGANIC) TABLES A-1 TO A-28



CLASSIFICATION SUMMARY: WASTE STREAM · BOF SLAG (FINE) [Source Characterization · Iscor Vanderbijlpark Steel]

	Acc. Risk		NAME OF	WASTE	STREAM: 8	OF SL	AG (FINE)				VOLUN	1E: 35,000),000 KG I	MONTH		
INORGANIC	Value	TO	TAL ANALYSI	S	⁵ PROBIT F	RUN	TCL	P EXTRACTION	אכ	5 PROBIT	RUN	ACID R	AIN EXTRAC	TION	s skoem	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk
	ppb	ppm	ppb	Site	fication %	RIAR	ppm	ppb	Site	lication %	RIAR	ppm	ррь	Site	fication %	R/AR
Aluminium as Al	10000	38900	898 59000 0	H:h	1.00E + 02	R	3.0	69300	H:h	2.37E+01	R	0.52	12012	H:h	1.73E-03	R
Arsenic as As	430	< 12	277200	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	6	0.00E + 00	AR
Barium as Ba	7800	288	6652800	H:h	1.00E + 02	R	0.42	9702	Hih	2.33E-03	R	0.18	4158	G	5.91E-07	AR
Cadmium as Cd	31	< 10	231000	H:H	1.00E + 02	R	< 0.03	0.00	G	0.00E + 00	AR	< 0.03	0.00	G	0.00E + 00	AR
Cobalt as Co	6900	5.0	115500	H:H	8.43E + 01	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00E+00	AR
Chromium ³⁺ as Cr ³⁺	4700	1282	29614200	H:h	1.00E+02	R	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E + 00	AR
Copper as Cu	100	14	3 2 3400	H:H	1.00E+02	R	< 0.05	0.00	G	0.00E+00	AR	< 0.05	0.00	G	0.00E + 00	AR
Iron as Fe	9000	160000	3696000000	H:h	1.00E + 02	R	0.51	11781	H:h	3.55E-03	R	0.50	11550	H:h	3.02E-03	R
Lead as Pb	100	< 18	415800	H:H	1.00E + 02	R	0.03	693	H:H	2.37E+01	R	< 0.02	0.00	G	0.00E + 00	AR
Manganese as Mn	300	30400	702240000	H:H	1.00E+02	R	0.10	2310	H:H	3.05E + 01	R	1.2	2/720	H:H	1.00E + 02	R
Mercury as H ₅	22	< 5.0	115500	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Nickel as Ni	1140	< 66	1524600	H:H	1.00E + 02	R	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	0.00	G	0.00E ÷ 00	AR
Selenium as Se	260	< 5.0	115500	H:H	1.00E + 02	R	0.02	462	H:H	3.67E-02	8	< 0.02	0.00	G	0.00E+00	AR
Silver as Ag	2000	22	508200	H:h	1.00E+02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Titatium as Ti	731	3023	69831300	H:H	1.00E + 02	R	< 0.02	0 .00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E ÷ 00	AR
Vanadium as V	1300	229	5289900	H:h	1.00E + 02	R	0.11	2541	H:h	7.11E-02	R	< 0.02	0.00	G	0.00E +00	AR
Zinc as Zn	700	19	438900	H:H	1.00E + 02	R	< 0.04	0.00	G	0.00E + 00	AR	(1.96)	22170	H:H	9.88E+01	R
Fluoride as F-	1500	18900	436590000	H:h	1.00E + 02	R	2.0	46200	H:h	9.86E + 01	R	0.5	11550	H:h	3.05E+01	R
Waste Stream classifies:	t:H / H:h / G	Worst	. Case Scenario	H:H				Case Scenario	提出				Case Scenaria	Н:Н		
Risk to Environn	nent: R / AR	Risk	to Environment	₹ R	Aposto.	R	Risk t	Environment	R		R	Risk to	o Envir <mark>on</mark> ment	R		R

CLASSIFICATION SUMMARY: WASTE STREAM - BOF SLAG (COURSE)

	Acc. Risk	ı	NAME OF W	ASTE ST	REAM: BO	F SLA	G (COURSI	Ξ)			VOLUN	1E: 35,000	,000 KG / I	MONTH		
INORGANIC	Value	TO	TAL ANALYSI	S	5 PROBIT F	RUN	TCLF	EXTRACT	oN	5 PROBIT	RUN	ACID R	AIN EXTRAC	TION	5 PROBIT	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk
	ppb	ppar	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	RIAR	ppm	ррь	Site	fication %	RIAR
Aluminium as Al	10000	26400	609840000	H:h	1.00E + 02	R	2.5	57750	H:h	1.42E + 01	R	0.25	5775	G	1.42E-06	AR
Arsenic as As	430	< 12	277200	Н:Н	1.00E + 02	R	< 0.02	0.00	6	0.00E+00	AR	< 0.02	0.00	6	0.008+00	AR
Barium as Ba	7.800	453	10464300	H:h	1.00E + 02	R	2.4	55440	H:h	2.52E + 01	R	0.42	9702	H:h	2.33E-03	R
Cadmium as Cd	31	< 10	231000	Н:Н	1.00E + 02	R	< 0.03	0.00	G	0.00E + 00	яR	< 0.03	0.00	G	0.00E + 00	AR
Cobalt as Co	6900	7.8	180180	H:H	9.70E+01	8	< 0.07	0.00	G	0.00E+00	дR	< 0.07	0.00	G	0.00E + 00	AR
Chromium ^{3*} as Cr ³⁺	4700	8121	187595100	H:h	1.00E+02	R	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00 + 300.0	AR
Comper as Cu	1.00	60	1386000	H:H	1.00E+02	R	< 0.05	0.00	G	0.00E + 00	AR	< 0.05	0.00	G	0.008+00	AR
Iron as Fe	9000	223000	5151300000	H:h	1.00E + 02	R	169	3903900	H:h	1.00E + 02	R	0.68	15708	H:b	3.23E-02	R
Lead as Pb	100	< 18	415800	H:H	1.00E + 02	8	0.08	1848	H:H	8.85E + 01	R	< 0.02	0.00	G	0.00E + 00	AR
Manuanese as Mn	300	58500	1351350000	H:H	1.00E + 02	R	110	2541000	H:H	1.00E + 02	R	2.5	57750	H;H	1.00E+02	R
Mercury as Ha	22	< 5.0	115500	H:H	1.00E+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Nickel as Ni	1140	< 68	1524600	H:H	1.00E+02	R	< 0.13	0.00	G	0.00E+00	AR	< 0.13	0.00	G	0.00E + 00	AR
Selenium as Se	60	< 5.0	115500	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E+00	AR
Silver as Ag	2000	<10	231000	H:h	1.00E+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E+00	AR
Titatium as Ti	731	4026	93000600	H:H	1.00E + 02	R	0.03	693	G	2.11E-04	AR	< 0.02	0.00	G	0.00E + 00	AR
Vanadium as V	1300	454	10487400	H:h	1.00E + 02	R	0.07	1617	H:h	2.33E-03	R	0.07	1617	H:h	2.33E-03	R
Zinc as Zn	700	64	1478400	H:H	1.00E+02	R	0.08	1848	H:H	4.62E-01	8	< 0.04	0.00	G	0.00E+00	AR
Fluoride as F-	1500	10700	247170000	H:h	1.00E + 02	R	3.0	69300	H:h	9.99E+01	R	0.3	6930	Hith	6.5 6E + 00	R
aste Stream classifies;			t Case Scenario	H:H				Case Scenari I	H.H				Case Scenario			1
Risk to Environ	nent: R / AR	Risk	to Environment	₽ R		1.19	Risk to	Environment	R	· 6	- R	Risk to	Environment	R		R

Draft for discussion CONFIDENTIAL Research for IVS

Table A-3

CLASSIFICATION SUMMARY: WASTE STREAM - DESULPHURISATION SLAG

	Acc. Risk	NAN	IE OF WAS	E STRE	AM: DESUL	.PHUF	RISATION S	SLAG			VOLUI	VIE: 3,600,	000 KG / N	TONTH		
INORGANIC	Value.	70	TAL ANALYSI	S	5 PROBIT F	RUN	TCLF	EXTRACTION	NC	5 PROBIT	RUN	ACID R	AIN EXTRAC	TION	5 PROBIT	RUM
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	³ EEC	⁴ Disposal	Risk Quanti-	Rist
	ppb	ppm	ppb	Site	fication %	RIAR	nym .	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	RIAR
Aluminium as Al	10000	34000	80784000	H:h	1.00E + 02	R	2.7	6415	G	4.37E-06	AR	3.3	7841	G	3.40E-05	AR
Arsenic as As	430	< 12	28512	Н:Н	1.00E + 02	R	< 0.02	48	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	ĀR
Barium as Ba	7800	159	377784	H:h	9.99E+01	R	0.45	1069	G	3.33E-14	ÀR	0.06	143	G	0.00E + 00	AR
Cadmium as Cd	31	< 10	23760	H:H	1.00E + 02	R	< 0.03	0.00	G	0.00E+00	AR	< 0.03	0.00	G	0.00E + 00	AR
Cobalt as Co	6900	5.2	12355	H:H	3.88E-02	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00E + 00	AR
Chromium ^{3,} as Cr ³⁺	4700	1621	3851496	H:h	1.00E + 02	R	< 0.07	0.00	G	0,00E +00	AR	< 0.07	0.00	G	0.00E+00	ÁR
Copyer as Cu	100	24	57024	H:H	1.00E + 02	R	< 0.05	0.00	G	0.00E+00	AR	< 0.05	0.00	G	0.00E+00	ÁR
Iron as Fe	9000	200000	475200000	H:h	1.00E + 02	R	0.31	737	G	0.00E+00	AR	0.50	1188	G	2.22E-14	AR
Lead as Pb	100	< 18	42768	H:H	1.00E+02	R	0.03	71	G	1.25E-05	AR	0.02	48	G	1.83E-07	AR
Manganese as Mn	300	29900	71042400	H:H	1.00E + 02	R	0.24	570	H:H	5.86E-02	8	0.10	238	G	3.82E-05	AR
Mercury as H ₃	22	< 5.0	11880	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.008+00	AR
Nickel as Ni	1140	< 66	156816	H:H	1.00E+02	R	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	0.00	G	0.00E + 00	AR
Selenium as Se	260	< 5.0	11880	H:H	9.99E + 01	R	0.03	71	G	2.17E-10	AR	< 0.02	0.00	6	0.00E + 00	ÁR
Silver as Ag	2000	98	232848	Hth	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	6	0.00E+00	ÁR
Titatium as Ti	731	2706	6429456	H:H	1.00E + 02	R	0.03	71	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	ÁR
Vanadium as V	1300	212	503712	H:h	1.00E + 02		0.03	71	G	0.00E + 00		< 0.02	0.00		0.00E + 00	
Zinc as Zn	700	65	154440	H:H	1.00E + 02		< 0.04	0.00	G	0.00E+00	AR	< 0.04	0.00		0.00E + 00	
Fluoride as F-	1500	22600	53697600	H:h	1.00E + 02	R	40	19008	H:h	6.78E+01	R	1.7	4039	Hth	5.17E-01	R
Waste Stream classifies:			Case Scenario	H:H				ase Scenario	H:H				Case Scenario	H:h		
Risk to Environn	nent: R / AR	Risk	to Environment	R		4	Risk to	Environment	R		R	Risk to	Environment	R		- R

Draft for discussion CONFILENTIAL Research for 113

Table A-4

CLASSIFICATION SUMMARY: WASTE STREAM - BOF SLAG (UNPROCESSED)

	Acc. Risk	NAM	IE OF WAST	E STRE	AM: BOFS	LAG (UNPROCES	(SED)			VOLUN	1E: 35,000	,000 KG / I	MONTH		
INORGANIC	Value	TO	TAL ANALYSI	S	FROBIT R	UN	TCLF	EXTRACTI	DM	5 PROBIT	RUN	ACID R	AIN EXTRAC	TION	⁵ PROBIT	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk
	ppb	глда	ррь	Site	fication %	1/AR	ppm	ppb	Site	fication %	R/AR	ppm	ррь	Site	fication %	RIAF
Aluminium as Al	10000	26800	619080000	H:b	1.00E+02	R	1.5	34650	H:h	1.92E+00	R	0.34	7854	6	3.46£-05	AR
Arsenic as As	430	<12	277200	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00€+00	AR	< 0.02	0.00	6	0.008+00	AR
Barium as Ba	7800	52	1201200	H:h	1.00E+02	R	0.19	4389	G	1.07E-06	AR	0.09	2079	6	1.61E-10	AR
Cadmium as Cd	31	<10	231000	H:H	1.00E+02	R	0.08	1848	H:H	1.00E+02	R	< 0.03	0.00	G	0.00£+00	AR
Cobalt as Co	6900	8.E	87780	H:H	6.81E+01	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00E + 00	AR
Chromium ³⁺ as Cr ³⁺	4700	827	19103700	H:h	1.00E+02	R	< 0.07	0.00	G	0.00E + 0D	AR	< 0.07	0.00	G	0.008+00	AR
Copper as Cu	¥100	< 2.0	46200	H:H	1.00E + 02	R	< 0.05	0.00	G	0.00+300.0	AR	< 0.05	0.00	6	0.00E+00	AR
Iron as Fe	9000	209000	4827900000	H:h	1.00E+02	R	0.40	9240	H:h	4.38E-04	R	0.33	7623	6	7.25E-05	AR
Lead as Pb	2100	< 18	415800	H:H	1.00E+02	R	< 0.02	0.00	G	0.00E+0D	AR	< 0.02	0.00	G	0.00E+00	AR
Manyanese as Mn	300	49600	937860000	H:H	1.00E+02	R	0.12	2772	H:H	4.39E+01	R	0.37	8547	H:H	9.80E+D1	R
Mercury as Hg	22	< 5.0	115500	H:H	1.00€+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.008+00	AR
Nickel as Ni	1140	< 66	1524600	H:H	1.00E+02	R	< 0.13	0.00	G	0.00E+00	AR	< 0.13	0.00	6	0.00£+00	AR
Selenium as Se	260	< 5.0	115500	H:H	1.00E + 02	R	0.03	693	H:H	4.88E-01	R	< 0.02	0.00	G	0.008+00	AR
Silver as Ag	2000	<10	231000	H:h	1.00E+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.008+00	AR
Titatium as Ti	731	2983	68907300	H:H	1.00E+02	R	< 0.02	0.00	G	0.008+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Vanadium as V	1300	263	6075300	H:h	1.00E + 02	R	0.11	2541	H:h	7.11E-02	R	0.07	1617	H:h	2.33E-03	R
Zinc as Zn	700	12	277200	H:H	1.00E+02	R	< 0.04	0.00	G	0.00E+00	AR	< 0.04	0.00	6	0.00E+00	AR
Fluoride as F-	1500	14200	328020000	H:h	1.00E + 02	R	1.0	23100	H:h	8.01E+01	R	0.1	2310	H:h	1.28E-02	R
laste Stream classifies:	t:H / H:h / G	Worst	Case Scenario	H:H			Worst (lase Scenario	H:H			Worst (Case Scenario	H:H		
Risk to Environn	nent: R / AR	Risk	to Environment	R		R	Risk to	Environment	R		R	Risk to	Environment	R		H.

Draft for discussion COMPIDENTIAL Research for IVS

Table A-5

CLASSIFICATION SUMMARY: WASTE STREAM - EAF BAGHOUSE DUST

	Acc, Risk	N	AME OF WA	STE ST	REAM: EAF	BAGH	OUSE DU	ST .			VOLUI	AE: 1,500,	,000 KG / N	ONTH		
INORGANIC	Value	TO	TAL ANALYSI	S	⁵ PROBIT F	RUN	TCL	EXTRACTI	DN	5 PROBIT	RUN	ACID R	AIN EXTRAC	TION	PROBIT	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk
	pph	ppm	ppb	Site	fication %	R/AR	ppm	pph	Site	fication %	BIAR	ppm	ppb	Site	fication %	RIAR
Aluminium as Al	10000	5900	5841000	H:h	1.00E + 02	R	2.9	2871	6	4.05E-10	Añ	< 0.15	0.00	Ü	0.00E + 00	AR
Arsenic as As	430	22	21780	H:H	9.99E+01	R	0.02	20	G	0.00E+00	AR	0.09	89	S	6.54E-12	AR
Barium as Ba	7800	106	104940	H:h	7.19€+01	R	0.40	396	6	0.006 + 00	AR	0.04	40	(ì	0.008+00	AR
Cadmium as Cd	31	< 10	9900	H:H	1.00E+02	R	0,11,	109	H:H	2.05E + 00	R	< 0.03	0.00	G	0.00E+00	AR
Cobalt as Co	6900	8.1	8019	Н:Н	1.31E-03	R	< 0.07	0.00	6	0.00E + D0	AR	< 0.07	0.00	G	0.008+00	AR
Chromium ³ * as Ct ³ *	4700	658	651420	H:h	1.00E + 02	R	1.8	1782	G	1.18E-08	AR	2.8	2772	G	1.78E-06	AR
Copper as Cu	100	551	545490	H:H	1.00E + 02	R	< 0.05	0.00	6	0.00E + D0	AR	< 0.05	0.00	6	0.00E + 00	AB
Iron as Fe	9000	462000	457380000	H:h	1.00E + 02	R	< 0.05	0.00	G	0.00 + 300.0	AR	0.21	208	G	0.00E ± 00	AR
Lead as Pb	100	1189	1177110	H:H	1.00E + 02	R	0.06	59	G	1.79E-06	An	< 0.02	0.00	G	0.00E+00	AR
Manmanese as Min	300	36700	36333000	H:H	1.00E + 02	R	30	36630	H:H	1.00E+02	R	0.02	20	Ü	0.00E+00	AR
Mercury as Hg	22	< 5.0	4950	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Nickel as Ni	1140	< 66	65340	H:H	1.00E+02	R	< 0.13	0.00	0	0.00E + 00	AR	< 0.13	0.00	G	0.00E + 00	AR
Selenium as Se	260	< 5.0	4950	Н:Н	8.96E + 01	R	0.06	59	G	2.12E-11	AR	0.02	20	G	0.00E + 00	AR
Silver as Ag	2000	14	13860	H:h	2.37E+01	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00£ ± 00	MR
Titatium as Ti	731	552	546480	Hill	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Vanadium as V	1300	50	49500	H:h	9.96E+01	R	0.03	30	G	0.00E + 00	AR	0.17	168	G	1.11E-14	AR
Zinc as Zn	700	26400	26136000	抽出	1.00E + 02	R	51	50490	H:H	1.00E+02	R	< 0.04	0.00	6	0.00E+00	AR
Fluoride as F-	1500	22600	22374000	H:h	1.00E + 02	R	13	12870	H:h	3.82E + 01	H	0.1	99	G	0.00E+00	AR
laste Stream classifies: I	1:H / H:h / G	Worst	Case Scenerio	H:H	an.		Worst (ase Scenario	H:H			Worst (Case Scenario	G		
Risk to Environm	nent: R / AR	Risk	to Environment	R		4	Risk to	Environment	R		R	Risk to	Environment	AR		AR

Draft for discussion CONFIDENTIAL Research for the

Table A-6

Research for 145 CLASSIFICATION SUMMARY: WASTE STREAM . LADLE FURNACE 1&2 BAGHOUSE DUST

	Acc. Risk		NAME OF W	ASTE S	TREAM: LA	DLE F	URNACE 18	&2 BAGHO	USE DU	ST		VOL	JME: #0,00	00 KG N	AONTH	
INORGANIC	Value	TO.	TAL ANALYSI	S	5 PROBIT I	RUN	TCLF	EXTRACTION	INC	FROBIT	RUN	ACID H	AIN EXTRAC	TION	5 PROBIT	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk
	ppb	ppm	ppb	Site	tification %	RIAR	ppm	ppb	Site	tification %	RIAR	ppm	ppb	Site	tification %	ALAR
Aluminium as Al	40000	24400	161040	H:h	8.24E+01	R	3.9	25.7	G	0.00E+00	AR	1.9	12.5	G		AR
Arsenic as As	430	24	158	G	8.15E-09	AR	0.02	0.132	G	0.00E +00	AR	0.04	0.264	G	0.00E+00	AR
Barium as Ba	7800	52	343	6	0.00E+00	AB	0.73	4.82	G	0.00E+00	AR	0.27	1.78	G	0.00E+00	AR
Cadmium as Cd	31	< 10	66	H:H	1.25E-01	R	< 0.03	0.00	G	0.00E+00	AR	< 0.03	0.00	G	0.00E+00	AR
Cobalt as Co	6900	4.0	26	6	0.00E+00	AR	< 0.07	0.00	G	0.00E+00	ÁR	< 0.07	0.00	G	0.00E+00	AR
Chromium ³⁺ as Cr ³⁺	4700	99	653	G	3.33E-14	AR	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00E+00	AR
Copper as Cu	100	148	977	H:H	4.82E+01	R	< 0.05	0.00	8	0.00E+00	AR	< 0.05	0.00	G	0.00E + 00	AR
Iron as Fe	9000	112000	739200	H:h	1.00E+02	R	< 0.05	0.00	B	0.00E+00	AR	0.09	0.594	6	0.00E + 00	лR
Lead as Pb	100	103	680	Н:Н	2.26E+01	R	0.66	4.40	G	0.00E+00	AR	0.54	3.60	G	0.00+ 300.0	AR
Manganese as Mn	300	19800	130680	Н:Н	1.00E + 02	R	0.05	0.330	G	0.00E+00	AR	0.03	0.198	G	0.00E +00	AR
Mercury as Hg	22	< 5.0	33	H:H	1.05E-02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Nickel as Ni	1140	<66	436	G	1.31E-08	AR	< 0.13	0.00	G	0.00E+00	AR	< 0.13	0.00	G	0.00E+00	AR
Selenium as Se	260	< 5.0	33	G	1.11E-14	AR	0.23	1.52	6	0.00E+00	AH	0.10	0.660	G	0.00E+00	AH
Silver as A	2000	< 10	66	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	6	0.00+ 300.0	AR
Titatium as Ti	731	117	772	Н:Н	5.65E-04	R	0.05	0.330	6	0.00£+00	AR	< 0.02	0.00	G	0.00E+00	AR
Vanadium as V	1300	<41	271	G	7.17E-12	AR	< 0.02	0.00	- 6	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Zinc as Z n	700	814	5372	H:H	3.03E + 01	R	0.13	0.858	G	0.00E + 00	AR	< 0.04	0.00	G	0.00E + 00	ÀR
Fluoride as F-	1500	379300	2503380	H:h	1.00E + 02	_	122	805	G	6.37E-07	ÄR	8.0	52.8	G	0.00£ ±00	AR
Waste Stream classifies:			Case Scenario	H:H	100			Case Scenario					Case Scenario		,	
Risk to Environ	ment: R / AR	Risk	to Environment	R		K	Risk to	Environment	AR	. "	AH	Risk t	o Environment	AR		AR

Draft for discussion CONFIDENTIAL Research for IVS

Table A-7

CLASSIFICATION SUMMARY: WASTE STREAM . BOF BAGHOUSE 2 DUST

	Acc. Risk	NA	ME OF WAS	STE STR	EAM: BOF	BAGH	OUSE 2 DU	IST			VOLU	ME: 200,0	OO KG/M	ONTH		
INORGANIC	Value	701	TAL ANALYSI	S	5 PROME	RUN	TGLS	EXTRACTI	Uni	5 PROSIT	RUN	ACID R	AIN EXTRAC	TION	F PROBIT I	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quan-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk
	ppb	ppm	pph	Site	tification %	RIAR	ppm	ррь	Site	tification %	B / AR	ppm	ppb	Site	tification %	RIAR
Aluminium as Al	10000	9900	1306800	H:h	1.00E + 02	R	3.7	488	8	0.00E+00	AR	1.7	224	8	0.00E+00	AB
Arsenic as As	430	79	10428	H:H	9.58E+01	R	0.12	15.80	G	0.00E + 00	nR	0.04	5.30	G	0.00E + 00	AR
Barium as Ba	7800	44	5808	G	2.03E-05	AE	0.65	85.8	G	0.00E + 00	AR	0.35	46	G	0.00E + 00	AR
Cadmium as Cd	31	< 10	1320	Н:Н	9.98E+01	R	< 0.03	0.00	G	0.00E+00	AR	< 0.03	0.00	G	0.00 + 300.0	AB
Cobalt as Co	6900	6.9	911	G	2.22E-14	AB	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00E+00	AR
Chromium ³ as Cr ³ "	4700	62	8184	H:h	3.18E-02	R	< 0.07	0.00	G	0.00 + 300.0	AR	< 0.07	0.00	6	0.00E+00	AR
Comper as Cu	100	15	1980	H:H	9.09E + 01	R	< 0.05	0.00	G	0.00E+00	AR	< 0.05	0.00	G	0.00E+00	ÁR
Iron as Fe	9000	311000	41052000	Hith	1.00E+02	R	0.48	63.4	G	0.00E+00	AR	0.24	31.7	G	0.00E+00	AR
Lead as Pb	100	< 18	2376	H:N	9.55E + 01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Man anese as Mn	30%	3100	409200	H:H	1.00E + 02	R	0.02	2.64	G	0.00E + 00	ÄR	< 0.01	0.00	G	0.00£+00	AR
Marcury as Hy	22.	< 5.0	660	H:H	9.84E+01	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	5	0.00E+00	AR
Nickel as Ni	1144	< 66	8712	H:H	3.00E+01	R	< 0.13	0.00	6	0.00E+00	AR	< 0.13	0.00	G	0.00E + 00	RA
Selenium as Se	260	< 5.0	660	H:H	3.69E-01	R	0.07	9.24	6	0.00E+00	AR	< 0.02	0.00	6	0.00E+00	AR
Silver as Ag	2000	13	1716	G	8.21E-05	AR	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	6	0.00E + 00	AR
Titatium as Ti	/31	1742	229944	H:H	1.00E+02	R	0.05	6.60	G	0.00E+00	AR	< 0.02	0.00	G	0.00+300.0	aR
Vanadium as V	1300	< 41	5412	Hah	4.34E+00	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	μR
Zinc as Zn	700	1268	167376	H:H	1.00E + 02		0.32	42.20	G	0.00E + 00	AB	< 0.04	0.00		0.00E+00	_
Fluoride as F-	1500	59300	7827600	H:h	1.00E+02	R	2.0	2640	H:h	3.43E-02	R	7.7	1018	G	7.71E-06	aR
Waste Stream classifies:			Case Scenario	H:H				Case Scenario					Case Scenario			
Risk to Environ	ment: R / AR	Risk 1	o Environment	K		К	Risk to	Environment	R	/A	H	Risk to	Environment	':AK		AR

Draft for discussion CONFIDENTIAL Research for IVS

Table A-8

CLASSIFICATION SUMMARY: WASTE STREAM + BOF BAGHOUSE 3 DUST

	Acc. Risk	W	ASTE STR	EAM NA	ME: BOF B	AGHO	USE 3 DUS	Т			VOLU	ME: 100,0	100 KG / M	ONTH		
INORGANIC	Value	TOT	TAL ANALYSI	S	5 PROBIT I	RUN	TCLF	EXTRACTION	ON	5 PROBIT	HUN	AGID R	AIN EXTRAC	TION	⁸ PROBIT	RUN
COMPOUNDS	(IVIR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk	² Lab Conc.	BEEC	⁴ Disposal	Risk Quan-	Risk
	ppb	ppm	ppb	Site	tification %	RIAR	ppm	ppb	Site	tification %	RIAR	ppm	ppb	Site	tification %	R/AR
Aluminium as Al	10000	5200	343200	H:h	9.92E+01	R	2.3	152	G	0.00E + 00	áR	4.2	277	G	0.00E+00	AR
Arsenic as As	430	22	1452	H:H	1.69E+00	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	6	0.00E+00	ÀR
Barium as Ba	7800	17	1122	G	5.55E-14	AR	0.33	21.8	G	0.00E+00	AR	0.11	7.3	G	0.00E + 00	AR
Cadmium as Cd	31	< 10	660	H:H	9.30E+01	R	8, 1 ₉ ,	9.90	H:h	1.50E-09	R	< 0.03	0.00	G	0.00 + 300.0	AR
Cobalt as Co	6900	4.4	290	G	0.00E+00	AR	< 0.07	0.00	G	0.006 + 00	AR	< 0.07	0.00	G	0.00E+00	AR
Chromium ³⁺ as Cr ³⁺	4700	90	5940	H:h	2.66E-03	R	< 0.07	0.00	G	0.00+300.0	AR	< 0.07	0.00	G	0.00£+00	AR
Copper as Cu	100	22	1452	H:H	7.67E + 01	R	< 0.05	0.00	6	0.00E+00	AR	< 0.05	0.00	G	0.006+00	AR
Iron as Fe	. 9000	561000	37026000	H:h	1.00E + 02	R	0.19	12.5	6	0.00E+00	AR	0.94	62	G	0.00E + 00	AR
Lead as Pb	100	361	23826	H:H	1.00E+02	R	0.02	1.3	G	0.00E + 00	AR	0.09	5.90	G	0.00£+00	AR
Manyanese as Mn	300	10200	673200	H:H	1.00E + 02	R	42	2772	H:H	4.39E + 01	R	< 0.01	0.00	G	0.00E + 00	AP
Mercury as Hg	22	< 5.0	330	H:H	7.86E+01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	äR
Nickel as Ni	1140	< 66	4356	H:H	3.00E+00	R	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	0.00	G	0.00E + 00	AR
Selenium as Se	266	< 5.0	330	H:H	2.75E-03	R	0.04	2.6	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Silver as A ₃	2000	< 10	660	G	2.23E-09	Aft	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Titatium as Ti	731	720	47520	H:H	1.00E+02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00£+00	AR
Vanadium as V	1300	<41	2706	H:h	1.08Ë-01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	9.00	G	0.00E+00	AR
Zinc as Zn	700	10200	673200		1.00E + 02		/ 126	8316	Hild	6.32E+01	R	0.45	30	G	0.00E+00	_
Fluoride as F-	1500	22300	1471800	H:h	1.00E + 02	R	8.0	528	S	4.87E-09	AR	3.6	238	G	2.11E-13	AR
Waste Stream classifies:			Case Scenario	H:H				Case Scenario	-				Case Scenario	G		AD
Risk to Environ	ment: K / AR	Hisk t	to Environment	K A		N-	Hisk to	Environment	≠ K		梅	Hisk to	Environment	AR		AK

Draft for discussion CONFIDENTIAL Research for IVS

Table A-9

CLASSIFICATION SUMMARY: WASTE STREAM • BOF BAGHOUSE 1 DUST

	Acc. Hisk	NA	ME OF WA	STE STR	EAM: BOF	BAGH	DUSE 1 DU	ST			VOLU	IME: 100,0)00 KG M	ONTH		
INORGANIC	Value	TO.	TAL ANALYSI	S	5 PROBIT F	RUN	TSL	EXTRACTION	ON	5 PRUGIT	RUN	ACID R	AIN EXTRAC	TION	PROBIT !	RUN
COMPOUNDS	(IVIR)	² Lah Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk	² Lab Conc.	³ EEC	⁴ Disposal	Risk Quan-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk
	ppb	ppm	pph	Site	tification %	RJAR	ppm	ppb	Site	tification %	8/AR	ppm	ppb	Site	tification %	R/AR
Aluminium as Al	10000	12400	818400	H;h	1.00E + 02	R	2.5	165	9	0.00E + 00	AR	1.3	86	G	0.00E+00	AR
Arsenic as As	430	19	1254	H:H	8.01E-01	R	0.03	2.00	G	0.00+300.0	AR	< 0.02	0.00	G	0.00+ 400.0	AR
Barium as Ba	7800 [%]	26	1716	G	1.43E-11	AR	0.13	8.6	G	0.00E+00	ÁŘ	0.07	4.6	G	0.00E + 00	ΛR
Cadmium as Cd	31	< 10	660	H:H	9.30E+01	R	< 0.03	0.00	G	0.00E + 00	AR	< 0.03	0.00	G	0.00 + 300.0	AR
Cobalt as Co	6904	11.0	726	G	0.00E+00	AR	0.09	5.90	G	0.00E+00	AR	< 0.07	0.00	G	0.00E+00	AR
Chromium ³⁺ as Cr ³⁺	4700	10200	673200	H:h	1.00£+02	R	6.9	455	G	0.00E+00	AR	7.3	482	G	0.00E+00	AR
Copper as Cu	100	42	2772	H:R	9.77E+01	R	< 0.05	0.00	G	0.00£ + 00	AR	< 0.05	0.00	G	0.00E ÷ 00	AR
Iron as Fe	9000	151000	9966000	H:h	1.00E + 02	R	0.10	6.6	G	0.000 + 000	AP	0.21	14	3	0.00E + 00	AR
Lead as Pb	100	62	4092	H:H	9.97E+01	R	0.03	2.0	G	0.00E + 00	AR	0.06	4.00	G	0.00 + 300.0	AA
Manganese as Mn	300	127000	8382000	H:H	1.00E + 02	R	9.11	7.3	G	0.00E + 00	AR	0.32	21	G	0.00E + 00	AR
Mercury as Hg	22	< 5.0	330	H:H	7.86E + 01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	£	0.00E + 00	AR
Nickel as Ni	1140	< 66	4356	H:H	3.00 E + 00	R	< 0.13	0.00	G	0.00E+00	AR	< 0.13	0.00	G	0.008+00	AR
Selenium as Se	260	< 5.0	330	H:H	2.75E-03	P. 17	0.18	12	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Silver as Ag	2000	20	1320	G	5.88E-06	AR	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	Ē	0.00£ + 00	AR
Titatium as Ti	731	551	36366	H:H	9.99E + 01	R	0.03	2.00	G	0.00E+00	AR	< 0.02	0.00	9	0.00E + 00	AR
Vanadium as V	т300	150	9900	H:h	2.97E+01	R	< 0.02	0.00	G	0.00£+00	AR	< 0.02	0.00	G	0.00E+00	_
Zinc as Zn	700	406	26796	H:H	9.96E+01	R	0.16	11.0	G	0.00E + 00		< 0.04	0.00		0.00E + 00	_
Fluoride as F-	1500	194400	12830400	Hith	1.00E+02	R	9.0	594	G	1.98E-08	AR	8.3	548	G	7.61E-09	AR
Waste Stream classifies:	1:H / H:h / G	Worst	Case Scenario	H:H				Case Scenario					Case Scenario			
Risk to Environn	nent: R / AR	Risk	to Environment	R		(8)	Risk to	Environment	AR	- da. 1	AR	Risk t	o Environment	AH		AR

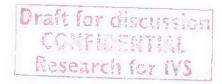
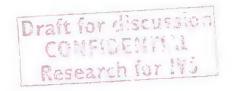

Draft for discussion CONFIDENTIAL

Table A-10

Research for WS CLASSIFICATION SUMMARY: WASTE STREAM . CONTINEOUS CASTER V3 SLUDGE


	Acc. Hisk	NAN	NE OF WAS	TE STRE	AM: CONT	INEOU	IS CASTER	V3 SLUD	GE		١	/OLUME:	31,000 KG	/ MONT	Н	
INORGANIC	Value	TOT	TAL ANALYSI	S	5 PROBIT F	RUN	TCLF	EXTRACTION	D#U	5 PROBIT	RUH	ACID R	AIN EXTRAC	TION	F PROBLE	RINE.
COMPOUNDS	(MR) ppb	² Lab Conc.	³EEC ppb	⁴ Disposal Site	Risk Quan- tification %	Risk R / AR	² Lab Conc.	3EEC ppb	⁴ Disposal Site	Risk Quan- tification %	Risk R / AR	² Lab Conc.	³ EEC ppb	⁴ Disposal Site	Risk Quan- tification %	Risk R / AR
Aluminium as Al	10000	<400	8184	G	5.19E-05		< 0.15	0.00		0.00E+00	AR	< 0.15	0.00		0.00E+00	
Arsenic as As	430	<12	246	G	1.28E·06		< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00		0.00E+00	
Barium as Ba	7800	20	409	G	0.00E + 00		0.32	6.55	G	0.00E + 00	AR	0.13	2.66	G	0.00E + 00	AR
Cadmium as Cd	31	< 10	205	H:H	2.1 0E + 01	R	2,40	4.09	H:h	2.22E-14	R	< 0.03	0.00	G	0.00E+00	AR
Cobalt as Co	390	9.6	196	G	0.00E + 00	AR	< 0.07	0.00	B	0.00E+00	AR	< 0.07	0.00	G	0.00E+00	AR
Chromium ³⁺ as Cr ³⁺	4700	233	4767	H:h	3.93E·04	R	< 0.07	0.00	G	0.00E +00	AR	< 0.07	0.00	G	0.00+300.0	AB
Corper as Cu	400	36	737	Н:Н	2.7 6E + 01	R	< 0.05	0.00	G	0.00+ 300.0	RA	< 0.05	0.00	G	0.00E+00	AR
Iron as Fe	900	731000	14956260	H:h	1.00E + 02	R	931	19048	H:h	1.20E-01	R	171	3499	G	1.59E-08	AR
Lead as Pb	100	< 18	368	H:H	2.54E+00	R	0.07	1.43	G	0.0 0E + 0 0	AR	0.04	0.82	G	0.00 + 300.0	AR
Manganese as Mn	300	1400	28644	H:H	1.00E+02	R	2.6	53.2	G	8.99E-13	AR	0.24	4.91	G	0.00E+00	AR
Mercury as H ₄	22	< 5.0	102	H:H	6.65E+00	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Nickel as Ni	1140	< 66	1350	H:H	1.54E-03	R	< 0.13	0.00	6	0.00E + 00	AR	< 0.13	0.00	G	0.00E+00	AR
Selenium as Se	260	< 5.0	102	G	1.77E-08	AR	< 0.02	0.00	6	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Silver as Ag	2000	<10	205	G	0.00E + 00	AR	< 0.02	0.00	6	0.00E + 00	AR	< 0.02	0.00	6	0.00E+00	AR
Titatium as Ti	731	179	3662	H:H	8.84E+00	R	0.05	1.02	G	0.00E + 00	ÀR	< 0.02	0.00	G	0.00E+00	AR
Vanadium as V	1300	< 41	839	G	4.65E-06	AR	0.02	0.41	6	0.00£+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Zinc as Zn	700	14	286	G	2.86E-08	-	0.14	2.86		0.00E + 00	AR	< 0.04	0.00		0.0 0E + 00	-
Fluoride as F-	्र _ी 500	9400	192324	H:h	1.00E+02	R	0.2	4.09	G	0.008 + 900.0	AR	< 0.1	0.00	G	0.00E + 00	AR
Vaste Stream classifies:	H:H / H:h / G	Worst	Case Scenario	H:H			Worst 0	Case Scenario	Hin	'''			Case Scenario			
Risk to Environ	ment: R / AR	Risk t	o Environment	R		R	Risk to	Environment	R		R	Risk to	Environment	AR.		AR.

CLASSIFICATION SUMMARY: WASTE STREAM - SINTER AG 100 DUST [Waste Characterization - Iscor Vanderbijlpark Steel]

	Acc. Aisk	N	AME OF W	ASTE ST	REAM: SIN	TER A	G 100 DUS	T			VOL	JME: 20,0	00 KG / MC	NTH		
INORGANIC	Value	TO.	TAL ANALYSI	S	5 PHORIT I	IUN .	TCLI	EXTRACTION	IN	5 PHOSIT	:UN	AGID R	AIN EXTRAC	TION	5 PROBIT	MIN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	³ EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk
	ppb	ppm	pph	Site	fication %	R / AR	ppm	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	R/A
Aluminium as Al	10000	10700	141240	H:h	7.50E+01	R	2.4	31.7	G	0.00E + 00	AR	0.84	11.1	G	0.00E+00	AR
Arsenic as As	430	<12	158	G	8.15E-09	AR	0.03	0.396	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Barium as Ba	7800	200	2640	G	3.04E-09	AR	0.73	9.60	G	0.00E + 00	ÅR	0.28	3.7	G	0.008 + 00	AR
Cadmium as Cd	31	<10	132	Н:Н	4.76E + 00	R	< 0.03	0.396	G	0.00E + 00	AR	< 0.03	0.00	G	0.00E + 00	AR
Cobalt as Co	690	5.9	78	G	0.00E+00	AR	< 0.07	0.924	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E + 00	AR
Chromium ³ as Cr ³	470	96	1267	G	1.85E-10	AR	< 0.07	0.924	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E + 00	AR
Copeer as Cu	100	8.2	108	H:H	6.89E-04	R	< 0.05	0.660	G	0.00E+00	AR	< 0.05	0.00	G	0.00E +00	AR
Iron as Fe	9000 -	414000	5464800	H:h	1.00E + 02	R	0.55	7.26	G	0.00E + 00	AR	0.14	1.85	ß	0.00E+00	AR
Lead as Pb	100	< 18	238	Н:Н	2.51E-01	R	< 0.02	0.264	G	0.00E ÷ 00	AR	< 0.02	0.00	G	0.00E+00	AR
Man anese as Mn	300	9300	122760	H:H	1.00E + 02	R	0.04	0.528	G	0.00E + 00	AR	0.03	0.396	G	0.00E+00	AR
Mercury as H ₁	22	< 5.0	66	H:H	9.31E-01	R	< 0.02	0.264	6	0.00£+00	AR	< 0.02	0.00	G	0.00E+00	AR
Nickel as Ni	1140	< 66	871	G	2.63E-05	AR	< 0.13	1.72	6	0.00E + 00	ÁR	< 0.13	0.00	G	0.00E +00	AR
Selenium as Se	260	< 5.0	66	G	8.7 2 E-11	AR	< 0.02	0.264	G	0.00E+00	AR	< 0.02	0.00	6	0.00E + 00	AR
Silver as Ag	2000	<10	132	G	0.00E + 00	AR	< 0.02	0.264	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Titatium as Ti	731	710	9372	H:H	6.86E + 01	R	0.07	0.924	G	0.00E + 00	AR	< 0.02	0.00	6	0.00E + 00	nR
Vanadium as V	1300	<41	541	6	3.54E-08	AR	0.07	0.924	G	0.00E +00	AR	< 0.02	0.00	G	0.00E + 00	AR
Zinc as Zn	700	36	475	G	7.85E-06	_	0.06	0.792	6	0.00E + 00	aR	< 0.04	0.00	6	0.00E + 00	_
Fluoride as F-	1500	9600	126720	H:h	1.00E+02	R	< 0.1	1.32	G	0.00E + 00	AR	1.9	25.1	G	0.00E + 00	AR
Waste Stream classifies:			Case Scenario	Н:Н				ase Scenario	Ь				Case Scenario			
Risk to Environ	ment: R / AR	Risk t	to Environment	R		R	Risk to	Environment	AR		AR .	Risk t	o Environment	AH		AR

CLASSIFICATION SUMMARY: WASTE STREAM - SINTER BG 100 DUST

[Waste Characterization · Iscor Vanderbijlpark Steel]

	Acc. Risk	N	AME OF WA	STE ST	REAM: SIN	TER E	G 100 DUS	ВТ			VOLI	JME: 20,0	00 KG / MC	NTH		
INORGANIC	Value	TOT	AL ANALYSI	S	⁵ PROBIT F	RUN	TCLF	EXTRACTION	าเก	⁵ PROBIT	RUN	ACID R	AIN EXTRAC	TION	5 PROBIT	RUN
COMPOUNDS	(MR)	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk
	ppb	ppm	ppb	Site	fication %	RIAR	ppm	բ քն	Site	fication %	RIAR	ppm	ppia	Site	fication %	R/AF
Aluminium as Al	10000	13400	176880	H:h	8.68E + 01	R	2.5	33	G	0.00E+00	AR	1.0	13.2	G	0.00E + 00	AR
Arsenic as As	430	< 12	158	G	8.15E-09	AR	0.02	0.264	G	0.00E + 00	AR	< 0.02	0.264	G	0.00E + 00	AR
Barium as Ba	7800	234	3089	G	1.98E-08	AR	0.82	11	G	0.00E+00	AR	0.60	7.92	G	0.00E + 00	aR
Cadmium as Cd	31	< 10	132	H:H	4.76E + 00	R	< 0.03	0.00	G	0.00E+00	ĀR	< 0.03	0.396	G	0.00E+00	AR
Cobalt as Co	6,900	7.0	92	G	0.00E + 00	AR	< 0.07	0.00	8	0.00E + 00	AR	< 0.07	0.924	G	0.00E + 00	AR
Chromium ³⁺ as Cr ³⁺	4700	93	1228	G	1.25E-10	AR	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.924	G	0.00E + 00	AR
Copper as Cu	100	10	132	H:H	3.80E-03	R	< 0.05	0.00	G	0.00E +00	AR	< 0.05	0.660	G	0.00E + 00	AR
Ir on as Fe	9000	386000	5095200	Hih	1.00E+02	R	< 0.05	0.00	G	0.00E + 00	AR	0.11	1.45	G	0,00E+00	AR
Lead as Pb	100	< 18	238	H:H	2.51E-01	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.264	G	0.00E + 00	AR
Manganese as Mn	300	8700	114840	8:H	1.00E + 02	R	0.01	0.132	G	0.00E + 00	AR	< 0.01	0.132	G	0.00E + 00	AR
Mercury as Hg	22	< 5.0	66	H:H	9.31E-01	R	< 0.02	0.00	G	0.00 + 300.0	АR	< 0.02	0.264	G	0.00E ÷ 00	AR
Nickel as Ni	1140	< 68	871	G	2.63E-05	AB	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	1.72	G	0.00E + 00	AR
Selenium as Se	260	< 5.0	66	G	8.72E-11	AR	0.03	0.396	G	0.00£+00	AR	< 0.02	0.264	G	0.00E + 00	AR
Silver as Ag	2000	< 10	132	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.264	G	0.00E + 00	AR
Titatium as Ti	731	865	11418	H:H	8.08E+01	R	0.03	0.396	G	0.00E+00	AR	< 0.02	0.264	G	0.00E+00	AR
Vanadium as V	1300	<41	541	G	3.54E-08	AR	0.05	0.660	6	0.00€+00	AR	< 0.02	0.264	G	0.00E+00	AR
Zinc as Zn	700	48	634	G	1.38E-04	AR	< 0.04	0.00	G	0.00E+00	AR	< 0.04	0.528	G	0.00E+00	AR
Fluoride as F-	1500	10500	138600	H:h	1.00E+02	R	0.3	4.0	G	0.00E + 00	AR	2.6	34.3	G	0.00E + 00	AR
aste Stream classifies:	1:H / H:h / G	Worst	Case Scenario	H:H			Worst C	ase Scenario	G			Worst (Case Scenario) G	a comba	_
Risk to Environn	nent: R / AR	Risk t	o Environment	R		R	Risk to	Environment	AR		AR	Risk to	Environment	AR		AR

Draft for discussion CONFIDENTIAL Research for IV5

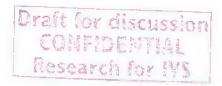
Table A-13

CLASSIFICATION SUMMARY: WASTE STREAM - SINTER CG 100 DUST [Waste Characterization - Iscor Vanderbijlpark Steel]

	Acc. Risk	N.	AME OF W	STE ST	REAM: SIN	TER C	G 100 DUS	ST			VOLU	JME: 30,0	00 KG / MC	NTH		
INORGANIC	Value	T01	TAL ANALYSI	S	5 PROBIT P	RUN	TCL	EXTRACTI	OM	5 / 1001 1	NAM .	ACID R	AIN EXTRAC	TION	⁵ PROBIT	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk
	ppb	ppnı	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	RIAR	ppm	pph	Site	fication %	RIA
Aluminium as Al	10000	< 400	7920	G	3.76E-05	AR	2.6	51.5	G	0.00E + 00	AR	0.18	3.6	G	0.00E+00	AR
Arsenic as As	430	< 12	238	G	8.94E-07	AR	< 0.02	0.00	G	0.00+ 400.0	AR	< 0.02	0.00	9	0.00E+00	aR
Barium as Ba	7800	7.8	154	G	0.00E + 00	AR	0.41	8.12	6	0.00E + 00	AR	0.20	4.0	G	0.00E+00	AR
Cadmium as Cd	31	<10	198	H:H	1.91E+01	R	< 0.03	0.00	G	0.00E + 00	AR	< 0.03	0.00	G	0.00E+00	AR
Cobalt as Co	6900	3.5	69	G	0.00E+00	AR	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00£ +00	AR
Chromium ³ as Cr ³ *	4700	10	198	G	0.00E+00	AR	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E + 00	AR
Correr as Cu	100	< 2.0	40	G	2.23E-08	AR	< 0.05	0.00	G	0.00E + 00	AR	< 0.05	0.00	G	0.00E + 00	AR
Iron as Fe	9000	3200	63360	H:h	2.46E+01	R	0.17	3.37	G	0.00 + 300.0	AR	< 0.05	0.00	G	0.00E+00	AR
Lead as Pb	100	< 18	356	H:H	2.18E+00	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Manjanese as Mn	300	4800	95040	H:H	1.00E + 02	R	72	436	H:H	8.20E-03	R	0.91	18	G	0.00E + 00	AR
Mercury as High	22	< 5.0	99	H:H	5.93E+00	R	< 0.02	0.00	6	0.00E + 00	AR	< 0.02	0.00	G	0.00£ + 00	AR
Nickel as Ni	1140	< 66	1307	H:H	1.16E-03	R	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	0.00	G	0.00E + 00	_
Selenium as Se	260	39	772	H:H	8.82E-01	R	< 0.02	0.00		0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	
Silver as Ag	2000	<10	198	8	0.00E + 00	AR	< 0.02	0.00		0.00E + 00	AR	< 0.02	0.00	6	0.00E + DO	
Titatium as Ti	731	36	713	G	2.75E-04	AR	0.03	0.59		0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	_
Vanadium as V	s 300	<41	812	G	3.29E-06		< 0.02	0.00		0.00E + 00	ÀR	< 0.02	0.00		0.00E +00	$\overline{}$
Zinc as Zn	700	48	950	H:H	4.76E-03		0.11	2.18		0.00E +00	AR	< 0.04	0.00		0.00E + 00	
Fluoride as F-	1500	10500	207900	H:h	1.00E + 02	R	0.2	4.0	_	0.00E +00	AR	< 0.1	0.00		0.00E + 00	AR
Vaste Stream classifies: 1	1:H / H:h / G		Case Scenario	H:H				Case Scenario					Case Scenario			
Risk to Environn	nent: R / AR	Risk t	o Environment	R		R	Risk to	Environment	R		R	Risk t	o Environment	AR		AR

CLASSIFICATION SUMMARY: WASTE STREAM - BF C DUST [Waste Characterization - Iscor Vanderbijlpark Steel]

	Acc. Risk		NAME (F WAS	TE STREAM:	BF (DUST				VOLUN	NE: 3,800	,000 KG / N	TONTH		
INORGANIC	Value	TO	TAL ANALYSI:	3	5 PRUBIT I	II)N	TCL	PEXTRACTION	N	5 PROBIT	KUN	AGID R	AIN EXTRAC	TION	5 PROSE	aual
COMPOUNDS	(MR)	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk
	ppb	ppm	ppb	Site	fication %	R/AR	ppm	ենր	Site	fication %	R/AR	npm	pph	Site	fication %	RIAR
Aluminium as Al	10000	11600	29092800	H:h	1.00E+02	R	2.1	5267	G	5.17E-07	AR	< 0.15	0.00	G	0.00 + 300.0	AR
Arsenic as As	430	< 12	30096	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AH	< 0.02	0.00	6	0.008 + 00	AR
Barium as Ba	7800	281	704748	H:b	1.00E + 02	R	1.0	2508	G	1.63E-09	AR	0.12	301	G	0.00E + 00	AR
Cadmium as Cd	31	< 10	25080	H:H	1.00E + 02	R	< 0.03	0.00	G	0.00E + 00	AR	< 0.03	0.00	G	0.00E + 00	AR
Cobalt as Co	6900	5.3	13292	H:H	6.44E-02	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00£ + 00	AR
Chromium ³⁺ as Cr ³⁺	4700	100	250800	Hith	1.00E + 02	R	< 0.07	0.00	G	0.00£ + 00	AR	< 0.07	0.00	G	0.008 + 00	AR
Copper as Cu	100	8.2	20566	H:H	1.00E + 02	R	< 0.05	0.00	G	0.00£ +00	AR	< 0.05	0.00	G	0.00E+00	AR
Iron as Fe	9000	415000	1040820000	H:b	1.00E+02	R	< 0.05	0.00	G	0.00E + 00	AR	0.06	150	G	0.00E+00	AR
Lead as Pb	100	< 18	45144	H:H	1.008+02	R	9.06	150	H:H	1.05E-02	R	< 0.02	0.00	6	0.00E + 00	aR
Manganese as Mn	ੁਤ00	10500	26334000	H:H	1.00E+02	R	0.09	226	G	2.28E-05	AR	< 0.15	0.00	G	0.00£ ±00	aR
Mercury as Hg	22	< 5.0	12540	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	ÁR	< 0.02	0.00	G	0.008+00	AR
Nickel as Ni	1140	< 66	165528	H:H	1.00E + 02	R	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	0.00	G	0.005 + 00	AR
Selenium as Se	260	< 5.0	12540	H:H	9.99E + 01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	6	0.00E + 00	ĀR
Silver as Ag	2000-	< 10	25080	H:h	6.71E+01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E +00	AR
Titatium as Ti	73 t	1142	2864136	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	6	0.00E + 00	AR
Vanadium as V	<i>-</i> 1300 ≈	<41	102828	H:h	1.00E + 02	R	0.11	276	G	9.06E-12	AR	0.10	251	G	2.68E-12	AR
Zinc as Zn	700	45	112860	H:H	1.00E + 02	R	0.12	301	G	5.18E-08	AR	< 0.04	0.00	G	0.00E + 00	AR
Fluoride as F-	1500	11800	29594400	H:h	1.00E+02	R	0.3	752	G	2.98E-07	AR	< 0.1	0.00	E	0.00E + 00	AR
Waste Stream classifies:	H:H / H:h / G	Worst	Case Scenario	H:H			Worst	Case Scenario	H.H			Worst	Case Scenario	G	**************************************	
Risk to Environ	ment: R / AR	Risk	to Environment	R	<u> </u>	R	Risk to	Environment	k R		R 🖁	Risk t	o Environment	AR		AR



Draft for discussion CONFIDENTIAL Research for IVS

Table A-15

CLASSIFICATION SUMMARY: WASTE STREAM - BF D DUST [Waste Characterization - Iscor Vanderbijlpark Steel]

	Acc. Risk		NAME	DF WAS	TE STREAM	BFD	DUST				VOLUM	/IE: 3,800	,000 KG N	ONTH		
INORGANIC	Value	TO	TAL ANALYSI	S	5 PROBIT F	RUN	TCL	PEXTRACTION	ON	5 PROBIT	BUM -	ACID R	AIN EXTRAC	TION	5 PROBIT	RUN
COMPOUNDS	(IVIR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk
	pph	ppm	ppb	Site	fication %	R/AR	ppm	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	RIAR
Aluminium as Al	10000	13800	34610400	H:h	1.00E + 02	R	7.3	18308	H:h	4.53E-02	R	0.34	853	G	0.00E+00	AR
Arsenic as As	430	< 12	30096	H:H	1.00E + 02	R	< 0.02	0.00	6	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Barium as Ba	7800	182	456456	H:h	1.00E+02	R	0.92	2307	G	5.85E-10	AR	0.25	627	8	0.00E + 00	AR
Cadmium as Cd	31	< 10	25080	H:H	1.00E + 02	R	< 0.03	0.00	G	0.00E+00	AN	< 0.03	0.00	G	0.00E+00	AR
Cobalt as Co	6900	8.9	22321	H:H	1.37E+00	R	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E+00	AR
Chromium ³⁺ as Cr ³⁺	4700	108	270864	H:h	1.00E + 02	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00E + 00	AR
Copper as Cu	100	8.2	20566	H:H	1.00E+02	R	< 0.05	0.00	G	0.00E + 00	AR	< 0.05	0.00	G	0.0 0E + 00	AR
Iron as Fe	9000	282000	707256000	H:h	1.00E + 02	R	3.0	7 524	G	6.39E-05	AR	0.90	2257	G	7.48E-11	AR
Lead as Pb	100	138	346104	H:H	1.00E + 02	R	0.08	201	н:н	8.57E-02	R	0.02	50	G	2.90E-07	AR
Manyanese as Mn	300	5500	13794000	Н:Н	1.00E + 02	R	24	60192	H;H	1.00£ + 02	R	4.9	12289	H:H	9.97E+01	R
Mercury as Hg	22	< 5.0	12540	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Nickel as Ni	1140	< 66	165528	H:H	1.00E + 02	R	< 0.13	0.00	G	0.00E+00	AR	< 0.13	0.00	G	0.00E +00	AR
Selenium as Se	250	< 5.0	12540	H:H	9.99E + 01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Silver as Ag	2000	< 10	25080	H:h	6.71E+01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.008 + 00	AR
Titatium as Ti	731	3476	8715300	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	g	0.00E + 00	AR
Vanadium as V	1500	<41	102828	H:h	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Zinc as Zn	700	402	1008216	H:H	1.0 0 E + 02	_	5.7	14296	H:H	9.19E+01	R	0.20	502	G	1.39E-05	
Fluoride as F-	1500	13500	33858000	H:h	1.00E + 0 2	R	2.0	5018	H:h	1.62E + 00	R	3.9	9791	H:h	2.02E + 01	R
Vaste Stream classifies: {	1:H / H:h / G		Case Scenario	帙日				Case Scenario					Case Scenario	HH		
Risk to Environn	ment: R / AR	Risk t	to Environm <mark>ent</mark>	R		W	Risk to	Environment	R		R	Risk to	o Environment	R	7888	fi

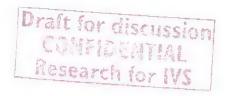
CLASSIFICATION SUMMARY: WASTE STREAM - BF SLUDGE [Waste Characterization - Iscor Vanderbijlpark Steel]

	Acc. Risk		NAME (JF WAST	E STREAM:	BFS	LUDGE				VOLUI	ME: 2,440,	000 KG / N	NONTH		
INORGANIC	Value	TO:	TAL ANALYSI	S	5 PROBIT S	BUN	TCL	EXTRACTI	UN	5 PROBIT	RUN	ACID R	AIN EXTRAC	TION	5 PROBIT	AUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	³ EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk
	ppb	ppm	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	R/AB	ppm	ppb	Site	fication %	RIAR
Aluminium as Al	10000	16000	25766400	H:h	1.00E + 02	R	45	72468	H:h	2.65E + 01	R	< 0.15	0.00	G	0.008+00	AR
Arsenic as As	-130	32	51533	H:H	1.00E + 02	8	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.008+00	AR
Barium as Ba	7800	282	454133	H:h	1.00E + 02	R	0.99	1594	G	5.55E-12	AR	0.30	483	G	0.00£ ± 00.0	AR
Cadmium as Cd	31	<10	16104	H:H	1.00E + 02	R	0.49	97.0	H:H	1.16E + 00	Fi	< 0.03	0.00	6	0.008+00	AR
Cobalt as Co	6900	7.0	11273	H:H	2.00E-02	R	< 0.07	0.00	G	0.006 + 00	AR	< 0.07	0.00	G	0.00E + 00	AR
Chromium ³⁺ as Cr ³⁺	700	55	88572	H:h	8.92E+01	R	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E+00	AB
Copper as Cu	100	27	43481	H:H	1.00E + 02	R	< 0.05	0.00	G	0.00E + 00	AR	< 0.05	0.00	6	0.00E+00	AR
Iron as Fe	9000	323000	520159200	H:h	1.00E + 02	R	29	46702	H:h	9.99E+00	R	0.08	129	G	0.00€ +00	AR
Lead as Pb	100	1352	2177261	H;H	1.00E + 02	R	1.5	2416	Н:Н	9.58E+01	R	< 0.02	0.00	G	0.00E+00	AR
Manganese as Mn	300	4000	6441600	H:H	1.00E+02	R	65	104676	H:H	1.00E + 02	R	10	16104	H:H	1.00E+02	R
Mercury as Hy	22	< 5.0	8052	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	ÄR
Nickel as Ni	1140	< 66	106286	H:H	1.00E+02	R	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	0.00	G	0.00E+00	AR
Selenium as Se	260	< 5.0	8052	H:H	9.86E+01	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Silver as Ag	2000	< 10	16104	H:h	3.36E+01	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E+00	AR
Titatium as Ti	731	940	1513776	H:H	1.00E+02	H	< 0.02	0.00	6	0.00E+00	AR	< 0.02	0.00	Ġ	0.008+00	AR
Vanadium as V	***1300	<41	66026	H:h	9.99E+01	a	< 0.02	0.00	6	0.00E+00	AR	< 0.02	0.00	G	0.008+00	AR
Zinc as Zn	700	7017	11300177	H:H	1.00E + 02	R	163	262495	H:H	1.00E+02	R	1. 1.178.2	5153	H:H	2.75E + 01	R
Fluoride as F-	1500	15100	24317040	H:h	1.00E + 02	R	0.8	1288	G	8.27E-05	AR	7.9	12722	H:h	3.74E+01	R
Waste Stream classifies: F			Case Scenario	H.H)			Case Scenario	F H.H				Case Scenario			
Risk to Environm	nent: K / AR	Risk t	to Environment	R		R	Risk to	Environment	R		8	Risk to	Environment	R	4.4	R _

Draft for discussion COMPLOBINITIAL Research for IVS

Table A-17

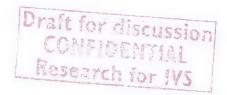
CLASSIFICATION SUMMARY: WASTE STREAM - BF PRIME GRANULATED SLAG


	Acc. lisk	NAMI	OF WASTE	STREA	M: BF PRIM	IE GR	ANULATED	SLAG			VOLUN	IE: 21,700),000 KG / I	MONTH		
INORGANIC	Value	TO	TAL ANALYSI	S	5 PROBIT F	RUN	YCL	P EXTRACTI	MO	5 PROBIT	RUN	ACID P	AIN EXTRAC	TION	5 PROBIT	guju
COMPOUNDS	(IVIR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Dispusal	Risk Quanti-	Risk
	ppb	ppm	ppb	Site	fication %	R / AR	ppm	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	RIM
Aluminium as Al	10000	69800	999675600	Hith	1.00E + 02	R		386694	H:h	9.96E+01	R	< 0.15	0.00	G	0.00£+00	AR
Arsenic as As	430	23	329406	Н:Н	1.00E + 02	R	< 0.02	0. 00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E +00	AR
Barium as Ba	7800	1004	14379288	H:h	1.00E + 02	R	3.5	50127	H:h	1.94£ + 01	R	0.22	3151	G	2.50E-08	AR
Cadmium as Cd	31	< 10	143220	H:H	1.00E + 02	R	< 0.03	0.00	G	0.00E+00	AR	< 0.03	0.00	G	0.00E + 00	AR
Cobalt as Co	6900	5.2	74474	H:H	5.59E + 01	R	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E + 00	AR
Chromium ³⁺ as Cr ³⁺	4700	28	401016	H:h	1.00E+02	R	< 0.07	0.00	G	0.00E + 00	AB	< 0.07	0.00	G	0.00E + 00	AR
Copper as Cu	100	10	143220	H:H	1.00E + 02	R	< 0.05	0.00	G	0.00E + 00	AR	< 0.05	0.00	G	0.00E + 00	AR
Iron as Fe	2000	5700	81635400	H:h	1.00E + 02	R	83	1188726	H:h	1.00E + 02	R	10	143220	H:h	8.18E+01	8
Lead as Pb	100	67	959574	H:H	1.00E + 02	R	0.05	716	H:H	2.57E+01	R	< 0.02	0.00	G	0.00£ +00	AR
Manganese as Mn	300	7200	103118400	H:H	1.00E+02	R	36	515592	H:H	1.00E + 02	R	1.4	20051	н:н	1.00E + 02	R
Mercury as Ha	22	< 5.0	71610	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	āR
Nickel as Ni	1140	< 66	945252	H:H	1.00E + 02	R	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	0.00	G	0.00E + 00	aR
Selenium as Se	260	18	257796	H:H	1.00E + 02	R	< 0.02	0.00	6	0.00E + 00	AR	< 0.02	0.00	6	0.00E+00	AR
Silver as Ag	2000	< 10	143220	H:h	1.00E + 02	R	< 0.02	0.00	6	0.00E + 00	AR	< 0.02	0.00	6	0.00E + 00	AR
Titatium as Ti	731	3467	49654374	H:H	1.00E + 02	R	0.09	1289	H:H	3.486-02	H	< 0.02	0.00	G	0.00+300.0	AR
Vanadium as V	1300	<41	587202	H:h	1.00E ÷ 02	R	0.04	573	G	6.908-08	AR	< 0.02	0.00	G	0.00E+00	AR
Zinc as Zn	700	31	443982	H:H	1.00E + 02		0.23	3294	H;H	7.04E + 00	R	0.04	573		5.20E-05	AR
Fluoride as F-	1500	15100	216262200	H:h	1.00E + 02	R	1.1	2864	H:h	6.06E-02	R	0.9	12890	H:h	3.84E + 01	R
laste Stream classifi <mark>es:</mark> F	1:H / H:h / G		Case Scenario					Case Scenario					Case Scenario	H.H.		
Risk to Environn	nent: R / AR	Risk	to Environment	R		R	Risk to	o Environment	R		R	Risk t	o Environment	R.		R

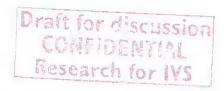
CLASSIFICATION SUMMARY: WASTE STREAM - BF OFF GRADE GRANULATED SLAG

	Acc. Risk	WAST	E STREAM	NAME: B	BF OFF GRAI	DE GR	ANULATED	SLAG			VOLUN	IE: 21,700	,000 KG / I	MONTH		
INORGANIC	Value	TO	TAL ANALYSI	S	5 PROBIT F	RUN	TOL	EXTRACTION	DN	5 PROBIT	RUN	ACID R.	AIN EXTRAC	TION	⁵ PROSIT	RUM
COMPOUNDS	(MR)	² Lab Conc.	³ EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	³ ЕЕС	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk
	ppb	ppm	ppb	Site	fication %	RIAR	ppm	pph	Site	fication %	STAR	ppm	ppb	Site	fication %	RIA
Aluminium as Al	10000	82800	1185861600	Hiħ	1.00E + 02	R	22	315084	H:h	9.88E+01	R	0.29	4153	Ğ	3.46E-08	AR
Arsenic as As	430	18	257796	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Barium as Ba	7800	1197	17143434	H:h	1.00E+02	R	1.2	17186	H:h	1.56E-01	R	0.27	3867	G	2.63E-07	AR
Cadmium as Cd	31	< 10	143220	H:H	1.00E+02	R	< 0.03	0.00	G	0.00£ + 00	AR	< 0.03	0.00	G	0.00E + 00	AR
Cobalt as Co	6900	7.0	100254	H:H	7.67E+01	R	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	8	0.00E+00	AR
Chromium ³ as Cr ³	4700	45	644490	H:h	1,00E + 02	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00E+00	AR
Copper as Cu	å 100	< 2.0	28644	H:H	1.00£+02	R	< 0.05	0.00	G	0.00E + 00	AR	< 0.05	0.00	0	0.00E+00	ÀB
Iron as Fe	B000 _	5500	78771000	H:h	1.00E + 02	R	12	171864	Hih	8.97E + 01	R	2.7	38669	Hith	4.94E + 00	R
Lead as Pb	100	57	816354	H:H	1.00E+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E ÷ 00	AR
Man anese as Mn	300	11200	160406400	H:H	1.00E+02	R	1.8	111712	H:H	1.00E + 02	R	1.1	15754	H:H	9.99E+01	R
Mercury as Hg	22	< 5.0	71610	H:H	1,00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AB
Nickel as Ni	140	<66	945252	H:R	1.00E+02	R	< 0.13	0.00		0.09E+00	AR	< 0.13	0.00	G	0.00E+00	AR
Selenium as Se	260	8.7	124601	H:H	1,00E+02	R	< 0.02	0.00	Û	0.00£+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Silver as Ag	2000	< 10	143220	H:h	1.00E + 02	R	< 0.02	0.00	G	0.00 E + 00	AR	< 0.02	0.00	G	0.00E + 00	Ak
Titatium as Ti	\$731	4218	60410196	H:H	1.00E + 02	R	0.18	2578	EH	2.08£+00	R	< 0.02	0.00	G	0.00E + 00	AR
Vanadium as V	1300	<41	587202	H:h	1.00E + 02	F	0.02	286	G	1.43E-11	AR	< 0.02	0.00	G	0.00E + 00	AR
Zine as Zn	700	25	358050		1.00E + 02	R	0.10	1432	H:H	9.64E-02	R	0.05	716	H:H	4.24E-04	R
Fluoride as F-	1500	16600	237745200	H:h	1.00E+02	R	0.2	2864	H:h	6.06E-02	2	8.0	11458	H:h	2.99E+01	R
Vaste Stream classifies:			Case Scenario	H:H				Case Scenario	H:M				ase Scenario	-		
Risk to Environ	ment: R / AR	Risk	to Environment	R	. 1	K	Risk to	Environment	R		R	Risk to	Environment	R		R

CLASSIFICATION SUMMARY: WASTE STREAM · DR PRODUCT DUST [Waste Characterization · Iscor Vanderbijlpark Steel]


	Ac . Risk		NAME OF V	VASTE S	TREAM: DR	PROD	UCT DUST	ſ			VOLUN	AE: 27,000,	,000 KG / I	MONTH		
INORGANIC	Valu	TO	TAL ANALYSI	S	5 PROBIT F	RUN	TCLI	PEXERACTI	Oiv	5 PROUT	HUN	ACID RA	AIN EXTRAC	TION	⁵ PROBIT	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk
	ppb.	ppm	ррь	Site	fication %	RIAR	ppm	ppb	Site	fication %	R/AR	ррпі	ppb	Site	fication %	RIA
Aluminium as Al	1.0000g	75200	1340064000	H:ħ	1.00E+02	R	2.5	44550	Hth	5.70E+00	R	0.28	4990	G	2.83£-07	AR
Arsenic as As	430	18	320760	H:H	1.00€+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AA
Barium as Ba	7300	616	10977120	H:h	1.00E+02	R	0.49	8732	H:h	9.45E-04	R	0.18	3208	6	3.09E-08	AR
Cedmium as Cd	3 f	< 10	178200	H:H	1.00E+02	R	< 0.03	0.00	G	9.00E+00	AR	< 0.03	0.00	G	0.00E + 00	AR
Cobalt as Co	6900	10	178200	H:H	9.68E+01	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.008 + 00	AR
Chromium ³ * as Cr ³ *	4700	54	962280	H;h	1.00E+02	R	< 0.07	0.00	B	0.00E + 00	AR	< 0.07	0.00	G	0.008 + 00	AR
Copper as Cu	100	< 2.0	35640	H:H	1.00E+02	R	< 0.05	0.00	6	0.00E+00	AR	< 0.05	0.00	G	0.00E + 00	AR
Iron as Fe	9000	36600	652212000	H:h	1.00E+02	R	< 0.05	0.00	G	0.00E+00	All	0.09	1604	G	9.55E-13	AB
Lead as Pb	100	38	677160	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AB
Man _s anese as Mn	300	800	14256000	H:H	1.00E+02	R	23	409860	Hart	1.00E + 02	R	15.04	713	H:H	2.49E-01	B
Mercury as H _¶	22	< 5.0	89100	H:H	1.00E + 02	B	< 0.02	0.00	6	0.00E+00	AR	< 0.02	0.00	G	0.00£ + 00	AB
Nickel as Ni	1140	< 66	1176120	H:H	1.00E + 02	R	< 0.13	0.00	G	0.00E+00	AR	< 0.13	0.00	G	0.00E+00	AR
Selanium as Se	260	< 5.0	89100	B:H	1.00E+02	R	< 0.02	0.00	G	0.00E+00	ÁR	< 0.02	0.00	G	0.00 ÷ 300.0	AR
Silver as Ag	2000	< 10	178200	H:h	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	aR
Titatium as Ti	731	3890	51499800	H:H	1.00E + 02	R	< 0.02	0.00	8	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Vanadium as V	1300	<41	730620	H:h	1.00E + 02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00		0.00E + 00	AH
Zinc as Zn	700%	9.8	174636	H:H	1.00E + 02	R	3.08	1426	H:H	9.37E-02	R	0.06	1069		1.206-02	_
Fluoride as F-	1500	12400	220968000	H:h	1.00E + 02	R	0.3	5346	H:h	2.19E + 00	R	0.4	7128	H:h	7.30E + 00	R
Vaste Stream classifies:			t Case Scenario					Case Scenario					ase Scenario			
Risk to Environ	nent: R / AR	Risk	to Environment	R		R	Risk to	Environment	A R		R	Risk to	Environment			h

CLASSIFICATION SUMMARY: WASTE STREAM - DR WET SCRUBBER MUD [Waste Characterization - Iscor Vanderbijlpark Steel]


	Acc. ARisk	NAR	NE OF WAS	TE STRI	EAM: DRW	ET SC	RUBBER N	AUD			VOL	JME: 97,01	DO KG / MI	NTH		
INORGANIC	Value	T01	TAL ANALYSIS	S	⁵ PROBIT (RUN	TCLF	EXTRACTION	M	5	RIGN	ACID R	AIN EXTRAC	TION	5 PROBIT	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal		Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk
	ppb	ppm	քրն	Site	fication %	B-/ AR	ppm	ррь	Site	fication %	RIAR	racid	ppb	Site	fication %	RIAF
Aluminium as Al	10000	37000	2368740	Hih	1.00E + 02	R	0.6	40.3	G	0.00E+00	AR	< 0.15	0.00	G	0.00E+00	AR
Arsenic as As	430	12	768	H:H	3.81E-02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	6	0.00E + 00	AR
Barium as Ba	_{5.} 7800	270	17285	H:h	1.62E-01	R	0.98	62.7	G	0.00E + 00	AR	0.19	12.16	0	0.00E + 00	AR
Cadmium as Cd	31	< 10	640	H;H	9.22E+01	R	< 0.03	0.00	6	0.00E + 00	AR	< 0.03	0.00	G	0.00E + 00	aR
Cobalt as Co	6900	7.0	448	G	0.00E+00	Aft	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	3	0.00E + 00	ÁR
Chromium ³ * as Cr ³ *	4700	33	2113	G	8.66E-08	AR	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E + 00	AR
Copper as Cu	100	< 2.0	128	H:H	2.95E-03	R	< 0.05	0.00	G	0.00E+00	AR	< 0.05	0.00	G	0.00E+00	AR
Iron as Fe	9000	116000	7426320	H:h	1.00E+02	R	< 0.05	0.00	G	0.00E+00	AR	0.06	3.84	6	0.00E+00	AR
Lead as Pb	100	26	1665	H:H	8.41E+01	R	0.02	1.28	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Manyanese as Mn	300	700	44814	H:H	1.00E + 02	R	4.5	314	₩H	5.21E-04	R	0.07	4.48	6	0.00E+00	AR
Mercury as Hg	22	< 5.0	320	H:H	7.68E + 01	R	< 0.02	0.00	6	0.00E+00	AR	< 0.02	0.00	G	0.008+00	AR
Nickel as Ni	1140	< 66	4225	H,H	2.62E + 00	E.	< 0.13	0.00	G	0.00E+00	AR	< 0.13	0.00	G	0.00E+00	AR
Sefenium as Se	260	< 5.0	320	H:H	2.13E-03	B	< 0.02	0.00	ij	0.00£+00	All	< 0.02	0.00	G	0.00E + 00	AH
Silver as Ag	2000	< 10	640	G	1.54E-09	AR	< 0.02	0.00	B	0.00£+00	AR	< 0.02	0.00	G	0.00E + 00	AB
Titatium as Ti	731	2218	141996	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E+00	AR
Vanadium as ¥	1300	< 41	2625	Hih	8.84E-02	R	< 0.02	0.00	6	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AB
Zine as Zn	700	29	1857	用譜	4.75E-01	R	0.06	3.80	6	0.00E+00	AR	< 0.04	0.00	G	0.00E+00	AR
Fluoride as F-	1500	15200	973104	Hih	1.00E+02	R	0.2	12.8	6	0.00E + 00	AR	< 0.1	0.00	G	0.00E ± 00	ÀR
Vaste Stream classifies:		Worst	Case Scenario	H:H			Worst 0	ase Scenario	· 排用 。			Worst C	ase Scenario	6.		
Risk to Environ	ment: R / AR	Risk t	o Environment	R_A		R	Risk to	Environment	R R		R	Risk to	Environment	AR		AR

CLASSIFICATION SUMMARY: WASTE STREAM - EAF SLAG [Waste Characterization - Iscor Vanderbijlpark Steel]

	Acc. Risk		NAME	OF WAS	TE STREAM	: EAF	SLAG				VOLUN	1E: 10,500),000 KG / I	MONTH		
INORGANIC	Value	TO	TAL ANALYSI	S	5 PROBLE	IUN	TELF	EXTRACTI	ON	5 PROBIT	RUN	ACID R	AIN EXTRAC	TION	5 PROBIT	RUM
COMPOUNDS	(MR)	² Lab Conc.	³ EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal		Risk
	ppb	ppm	ppb	Site	fication %	R / AR	ppm	ppb	Site	fication %	RIAB	pp.n	ррь	Site	fication %	R/AF
Aluminium as Al	10000	71000	492030000	H:h	1.00E + 02	R	36	249480	H:h	9.63E+01	R	< 0.15	0.00	G	0.00E + 00	AR
Arsenic as As	430	19	131670	H:H	1.00E + 02	R	0.02	139	G	1.74E-09	AR	< 0.02	0.00	G	0.00E + 00	aR
Barium as Ba	7800	1007	6978510	H:h	1.00E+02	R	1.3	9009	Hith	1.24E-03	R	0.18	1247	G	2.33E-13	AR
Cadmium as Cd	31	< 10	69300	H:H	1.00E+02	R	< 0.03	0.00	G	0.00E + 00	AR	< 0.03	0.00	G	0.00E+00	AR
Cobalt as Co	6900	6.2	42966	H:H	1.77E+01	R	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E + 00	AB
Chromium ³ * as Cr ³ *	4700	33	228690	H:h	9.99E+01	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	6	0.00E+00	AR
Corper as Cu	100	< 2.0	13860	H:H	1.00E + 02	R	< 0.05	0.00	G	0.00E + 00	AR	< 0.05	0.00	6	0.00E+00	AR
Iron as Fe	9000	5600	38808000	H:h	1.00E+02	R	7 15	110880	Him	6.58E+01	R	0.06	416	G	0.006+00	AR
Lead as Pb	100	54	374220	H:H	1.00E + 02	R	0.06	416	Hill	4.33E + 00	R	< 0.02	0.00	G	0.00E + 00	āR
Manganese as Mn	300	8600	59598000	H:H	1.00E+02	R	ia ()	415800	H:H	1.00E + 02	R	2.2	15246	R	9.99E + 01	R
Mercury as Hg	22	< 5.0	34650	H:H	1.00E+02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Nickel as Ni	1140	< 66	457380	H:H	1.00E + 02	R	< 0.13	0.00	G	0.00E+00	AR	< 0.13	0.00	G	0.00E + 00	AR
Selenium as Se	260	< 5.0	34650	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Silver as Ag	2000	<10	69300	H:h	9.92E+01	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Titatium as Ti	731	3526	24435180	H:H	1.00E+02	R	1,12	832	H:H	1.09E-03	R	< 0.02	0.00	G	0.00E + 00	AR
Vanadium as V	1300	<41	284130	H:h	1.00E+02	R	0.03	208	G	2.33E-13	AR	< 0.02	0.00	G	0.00E + 00	AR
Zinc as Zn	700	18	124740		1.00E+02	_	0.06	416		1.93E-06	ÀR	< 0.04	0.00		0.00E+00	AR
Fluoride as F-	1500	12300	85239000	H:h	1.00E+02	R	0,20	1386	G	1.66E-04	AR	< 0.10	0.00	6	0.00E+00	AR
Vaste Stream classifies:			Case Scenario					ase Scenario					Case Scenari <mark>o</mark>			
Risk to Environn	nent: A / AR	Risk	to Environment	R	l	R	Risk to	Environment	R		R	Risk to	o Environment	R		R

CLASSIFICATION SUMMARY: WASTE STREAM · FOUNDRY CYCLONE DUST

	Ace. Risk	NAM	IE OF WAS	TE STRE	AM: FOUNI	DRY C	YCLONE D	UST			VOL	UME: 4,00	10 KG / MO	NTH		
INORGANIC	Value	TOT	AL ANALYSI	S	5 PROBIT F	RUN	TCLI	EXTRACTION	JIV.	5 PROBIT	RUN	ACID R	AIN EXTRAC	THON	⁵ PROBIT	RUN
COMPOUNDS	(MR)	² Lab Conc.	³ EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	³ EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk
	ppb	ррт	ppb	Site	fication %	RIAR	ррт	ррь	Site	fication %	R/AR	ppm	ppb	Site	fication %	RIA
Aluminium as Al	10000	18000	47520	Hah	7.30E + 00	R	5.2	14	6	0.00E+00	AR	0.35	0.924	G	0.00E+00	AR
Arsenic as As	430	< 12	32	G	0.005+00	AR	< 0.02	0.00	6	0.00E+00	AR	< 0.02	0.00	6	0.00E+00	AR
Barium as Ba	7806	120	317	6	0.00E+00	AR	0.41	1.1	G	0.00E + 00	AR	0.14	0.370	E	0.00E+00	AR
Cadmium as Cd	31	<10	26	H:h	6.59E-05	8	< 0.03	0.00	G	0.00E + 00	AR	< 0.03	0.00	6	0.00E+00	AR
Cobalt as Co	69 8	7.4	20	G	0.00E+00	AR	< 0.07	0.00	G	0,00E +00	AR	< 0.07	0.00	6	0.00E + 00	AR
Chromium ³ * as Cr ³ *	4700	28900	76296	H:h	8.28E+01	R	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0,00E + 00	AR
Copper as Cu	100	14	37	G	8.85E-09	AR	< 0.05	0.00	G	0.00E + 00	AR	< 0.05	0.00	G	0.00E+00	AR
Iron as Fe	9000	31700	83688	H:h	4.44E + 01	R	20	53	G	0.00E+00	AR	0.89	2.35	6	0.00E + 00	AR
Lead as Pb	3100	173	457	H:H	6.30E+00	R	< 0.02	0.00	G	0.00£+00	AR	< 0.02	0.00	6	0.008+00	AR
Manganese as Mn	300	300	792	H:H	4.62E-01	R	21	55	G	1.38E-12	AR	0.58	1.53	G	0.00E+00	AR
Mercury as Hy	22	< 5.0	13	H:h	1.82E-06	R	< 0.02	0.00	6	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Nickel as Ni	1140	< 66	174	G	1.22E-13	AR	0.16	0.422	ü	0.00E + 00	AR	< 0.13	0.00	0	0.006 + 00	AR
Selenium as Se	260	< 5.0	13	6	0.00E+00	AR	< 0.02	0.00	G	Q.00E +00	AR	< 0.02	0.00	0	0.00E + 00	AR
Silver as Ag	2000	<10	26	G	0.00E ± 00	AR	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	6	0.00E+00	AR
Titatium as Ti	731	1591	4200	H:H	1.39E+01	R	< 0.02	0.00	G	0.000 + 00	AR	< 0.02	0.00	G	0.00£+00	All
Vanadium as V	1300	<41	108	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E+00	All
Zinc as Zn	700	91	240		3.55€-09	AR	0.28	0.739	G	0.00E + 00	AR	0.04	0.110	G	0.00E + 00	AR
Fluoride as F-	500	14800	39072	Hih	9.69E + 01	P	0.6	1.58	G	0.00E+00	AR	0.57	1.5	G	0.00E+00	AR
Vaste Stream classifies:	H:H / H:h / G	Worst	Case Scenario	_ Hill			Worst (Case Scenario	G			Worst (Case Scenario	9		
Risk to Environ	ment: B / AR	Risk t	o Environment	R			Risk to	Environment	An		AR	Risk to	Environment	AR		AR

Draft for discussion COMMISSIONAL Research for IVS

Table A-23

CLASSIFICATION SUMMARY: WASTE STREAM - BOF GRID [Waste Characterization - Iscor Vanderbijlpark Steel]

	Acc. Risk		WAS	TE STRE	AM NAME:	BOF	GRID	VOLUME: 459,000 KG / MONTH									
INORGANIC	Value	TO	TAL ANALYSI	S	FRORIT	RUN .	TGL	EXTRACTION	DIN	5 PRUMIT	RUN	ACID R	AIN EXTRAC	TiOn	5 PROMI	: (Ltiv	
COMPOUNDS	(MR)	² Lab Conc.	BEEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Cons.	3 EEC	⁴ Disposai	Risk Quanti-	Risk	² Lab Conc.	BEEC	⁴ Disposal	Risk Quanti-	Risk	
	ррв	ppm	ppb	Site	fication %	RJAR	utild	dąg	Site	fication %	BIAR	ppm	pph	Site	fication %	和人人	
Aluminium as Al	1000	6000	1817640	H:h	1.00E + 02	R	1.6	485	6	0.00E+00	AR	0.17	51	G	0.00E+00	A. i	
Arsenic as As	433	< 12	3635	H:H	3.71E+01	В	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	6	0.00E + 00	AR	
Barium as Ba	7/800	14	4241	G	7.35E-07	AR	0.47	142	G	0.00E+00	AR	0.10	30.3	6	0.00E+00	ДR	
Cadmium as Cd	31	< 10	3029	H:H	1.00E + 02	R	0.13	39.4	H:H	2.78E-03	R	< 0.03	0.00	6	0.00E+00	AR	
Cobalt as Co	6901	5.2	1575	G	2.28E-11	AR	< 0.07	0.00	G	9.00E+00	AR	< 0.07	0.00	G	0.00E + 00	μR	
Chromium ³⁺ as Cr ³⁺	4700	133	40291	H:h	3.82E+01	R	< 0.07	0.00	G	0.00£±00.0	AR	< 0.07	0.00	G	0.00E+00	AR	
Copper as Cu	00F	24	7271	H:H	1.00E + 02	B	< 0.05	0.00	8	0.00E+00	AR	< 0.05	0.00	U	0.00E + 00	АŘ	
Iron as Fe	9000	778000	235687320	H:h	1.00E+02	R	1210	366557	H:h	9.97E + 01	R	0.44	133	G	0.00E + 00	AR	
Lead as Pb	100	< 18	5453	H:H	1.00E + 02	R	0.11	33.3	G	2.49E-09	AR	< 0.02	0.00	G	0.00E+00	ĀR	
Manganese as Mn	300	10000	3029400	H:H	1.00E+02	R	82	24841	H:H	1.00E+02	R	0.20	60.6	G	4.79E-12	AR	
Mercury as Hg	2 2	< 5.0	1515	H:H	1.00E + 02	H	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E+00	AR	
Nickel as Ni	114%	< 66	19994	用譜	8.64E + 01	R	< 0.13	0.00	G	0.006+00	AR	< 0.13	0.00	G	0.00E+00	AR	
Selenium as Se	260	< 5.0	1515	H:H	1.46E+01	R	< 0.02	0.00	G	0.008+00	AR	< 0.02	0.00	S	0.00E+00	AR	
Silver as Ag	2000	< 10	3029	Hth	1.13E-02	R	< 0.02	0.00	G	0.00£+00	AR	< 0.02	0.00	ū	0.00E + 00	AR	
Titatium as Ti	731	470	142382	H:H	1.00E+02	R	0.02	6.10	G	0.00E+00	AR	< 0.02	0.00	S	0.00E + 00	AR	
Vanadium as V	1800	57	17268	H:h	7.11E+01	R	0.04	12.1	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR	
Zinc as Zn	700	307	93003		1.00E + 02	-	0.59	179		9.56E-11	AR	< 0.04	0.0		0.00E ± 00		
Fluoride as F-	1500	15100	4574394	H:h	1,00E+02	8	< 0.1	0.00	S	0.00E + 00	AR	0.4	121	S	0.00£ + 00	Ait	
Vaste Stream classifies:			Case Scenario	H:H				Case Scenario		, Physical			Case Scenario		de la paragrapa		
Risk to Environr	nent: n / Am	Risk	to Environment	R	6.6	R	Risk to	Environment	ij.		R	Risk to	o Environment	AR		AR	

Draft for discussion

Table A-24

Research for Characterization Summary: Waste Stream - DR RAW MATERIAL DUST, FURNACE DUST & SEPARATION DUST

	Acc. Risk	WAS	STE STREAM	NAME:	OR RAW MAT	VOLUME: 26,000,000 KG/ MONTH										
INORGANIC	Value	TO	TAL ANALYSI	S	5 PROBIT I	BUN	TCLF	EXTRACTI	NO	⁵ PROBIT	IUN	ASID R	AIN EXTRAC	TION	⁵ PROBIT I	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3 _{EEC}	⁴ Disposal		Risk
	pph	ppm	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	RIA
Aluminium as Al	10000	8900	152724000	H:h	1.00E + 02		4.0	68640	H:h	2.31E+01	R	< 0.15	0.00	G	0.00E+00	ÁR
Arsenic as As	1430	< 12	205920	H:H	1.00E+02		< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E+00	AR
Barium as Ba	7800	260	4461600	H:h	1.00E + 02		1.Q	17160	H:h	1.54E·01	R	0.33	5663	G	1.57E-05	AR
Cadmium as Cd	31	<10	171600	H:H	1.00E + 02		< 0.03	0.00	G	0.00E + 00	AR	< 0.03	0.00	6	0.00E + 00	AR
Cobalt as Co	6900	5.4	92664	H:H	7.18E+01		< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.008+00	AR
Chromium ³ " as Cr ³ *	4700	31	531960	H:h	1.00E+02		< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E+00	ÄR
Copper as Cu	100	3	51480	H:H	1.00E + 02		< 0.05	0.00	G	0.00E+00	ÁR	< 0.05	0.00	G	0.00E + 00	AR
Iron as Fe	9000	49300	8459880000	H:h	1.00E + 02		4.0	68640	H:h	2.98E + 01	R	< 0.05	0.00	G	0.00E + 00	ÀR
Lead as Pb	100	< 18	308880	H:H	1.00E+02		< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Manganese as Mn	303	500	8580000	H:H	1.00E + 02		19	326040	H:H	1.00E+02	R	1.1	18876	H:H	1.00E+02	R
Mercury as Hg	2.2	< 5.0	85800	H:H	1.00E + 02		< 0.02	0.00	6	0.00E+00	AR	< 0.02	0.00	G	0.008+00	AR
Nickel as Ni	1140	< 66	1132560	H:H	1.00E+02		< 0.13	0.00	6	0.00E + 00	AR	< 0.13	0.00	G	0.00E + 00	AR
Selenium as Se	260	< 5.0	85800	H:H	1.00E+02		< 0.02	0.00	G	0.00E+00	Ah	< 0.02	0.00	G	0.00E+00	AR
Silver as Ag	2000	< 10	171600	H:h	1.00E + 02		< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Titatium as Ti	731	360	6177600	H:H	1.00E + 02		< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Vanadium as V	1300	< 41	703560	H:h	1.00E + 02		< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Zinc as Zn	700	16	274560		1.00E + 02		0.3	5148	H:H	2.74E+01	R	0.04	686		2.87E-04	
Fluoride as F-	1500	11600	199056000	H:h	1.00E + 02		< 0.1	3432	G	1.97E-01	AR	0. ţ	1716	H:h	1.14E-03	R
aste Stream classifies:	1:H / H:h / G	Worst	Case Scenario	H:H			Worst C	ase Scenario	H:H			Worst (Case Scenario	H:H		
Risk to Environ	nent: R / AR	Risk	to Environment	, R		8	Risk to	Environment	R R			Risk to	Environment	∏ R		R

Draft for discussion CONFIDERTIAL Research for IVS

Table A-25

CLASSIFICATION SUMMARY: WASTE STREAM · VAALDAM SLUDGE [Waste Characterization · Iscor Vanderbijlpark Steel]

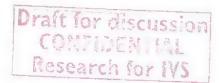
	Acc. Risk		NAME OF W	ASTE S	TREAM: VA	ALDA	M SLUDG	VOLUME: 2,000,000 KG / MONTH									
INORGANIC	Value	TO	TAL ANALYSI	S	⁶ PROBIT RUN		TCL	EXTRACTION	M	5 PROBIT	RUN	ACID 6	AIN EXTRAC	TION	5 PROBIT BUN		
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Oisposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	
	ppb	ppm	ppb	Site	lication %	RIAR	ppm	ppb	Site	fication %	R/AR	ppm	ppb	Site	fication %	RIA	
Aluminium as Al	(0000	108000	142560000	H:h	1.00E+02	R	< 0.15	0.00	G	0.00E+00	AR	< 0.15	0.00	G	0.00E+00	AR	
Arsenic as As	430	32	42240	H:H	1.00E+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E+00	sti	
Barium as Ba	7800 _c	357	471240	H:h	1.00E + 02	R	0.84	1109	G	5.55E-14	AR	0.21	277	G	0.00E + 00	AR	
Cadmium as Cd	31	6.9	9108	Н:Н	1.00E + 02	R	< 0.03	0.00	G	0.00E + 00	AR	< 0.03	0.00	G	0.00E + DO	AR	
Cobalt as Co	1900	14.0	18480	H:H	5.02E-01	R	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	G	0.00E+00	AR	
Chromium ³⁺ as Cr ³⁺	4700	148	195360	H:h	9.97E+01	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00E+00	AR	
Copper as Cu	100	35	46200	H:H	1.00E+02	R	< 0.05	0.00	6	0.000 + 00	AR	< 0.05	0.00	G	0.00E+00	AR	
Iron as Fe	9000	57200	75504000	H:h	1.00E+02	R	< 0.05	0.00	6	0.00E+00	AR	< 0.05	0.00	G	0.00E + 00	AR	
Lead as Pb	100	112	147840	H:H	1.00E + 02	R	0.05	66	G	5.88E-06	AR	< 0.02	0.00	G	0.00E+00	ĄЯ	
Manganese as Mn	300	572	755040	H:H	1.00E+02	R	0.41	805	H:H	5.07E-01	R	0.01	13	G	0.00E + 00	AR	
Mercury as H ₃	22	< 5.0	6600	H:H	1.00E+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	3	0.00E +00	AR	
Nickel as Ni	1140	< 66	87120	H:H	1.00E + 02	R	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	0.00	6	0.00E + 00	AR	
Selenium as Se	260	< 5.0	6600	H:H	9.66E+01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR	
Silver as Ag	2000	< 10	13200	H:h	2.08E+01	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E+00	AR	
Titatium as Ti	731	3902	5150640	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E ÷ 00	AR	
Vanadium as V	1300	73	96360	H:h	1.00E+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	6	0.00E+00	AR	
Zinc as Zn	700	100	132000	H:H	1.00E + 02	R	0.12	158	G	1.98E-11	AR	< 0.04	0.00	G	0.00E + 00	aR	
Fluoride as F-	1500	14	18480	H:h	6.58E+01	R	< 0.1	0.00	0	0.00E + 00	AR	< 0.1	0.00	G	0.00E+00	AR	
Naste Stream classifies:	計 / H:h / G	Worst	Case Scenario	H:H 🖣			Worst !	Case Scenario	JAM.			Worst	Case Scenario	G			
Risk to Environ	ment; R / AR	Risk	to Environment	R		R	Risk to	Environment	A		18:	Risk to	o Environment	AR		AR	

Draft for discussion CONFIDENTIAL Research for IVS

Table A-26

CLASSIFICATION SUMMARY: WASTE STREAM · DOLOCHAR · 1mm [Waste Characterization · Iscor Vanderbijlpark Steel]

	Acc. Risk		NAME OF	WASTE !	STREAM: D	OLOC	HAR -1mm	VOLUME: 1,500,000 KG / MONTH								
INORGANIC	Value	TOT	FAL ANALYSI	S	5 PROBIT RUN		TOL	· EXTRACTH	DN	5 PROBIT	RUN	ACID RAIN EXTRACTION			⁵ PROBIT I	RUN
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposat	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk
	ppb	ppm	pph	Site	fication %	R / AR	ppm	ppb	Site	fication %	RIAR	ព្រការ	pph	Site	tification	RIAR
Aluminium as Al	10000	54300	53757000	Hith	1.00E+02	R	2.1	2079	G	6.93E-12	AR	0.28	277	6	0.00E + 00	AR
Arsenic as As	430	17	16830	H:H	9.96E+01	R	< 0.02	0.00	G	0.00£+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Barium as Ba	2900	360	356400	H:h	9.99E+01	R	0.61	604	6	0.00E+00	AR	0.26	257	6	0.00E+00	AR
Cadmium as Cd	31	5.6	5544	H:H	1.00E + 02	B	< 0.03	0.00	G	0.00E+00	ÁR	< 0.03	0.00	6	0.00E + 00	AR
Cobalt as Co	6900	5.5	5445	G	3.63E-05	AR	< 0.07	0.00	G	0.00E + 00	AR	< 0.07	0.00	6	0.00E + 00	AR
Chromium ³ * as Cr ³ *	4700	38	37620	H:h	3.32E+01	R	< 0.07	0.00	G	0.000 + 00	AR	< 0.07	0.00	G	0.00E +00	AR
Comper as Cu	100	6.9	6831	H:H	1.00E+02	R	< 0.05	0.00	G	0.006+00	ÁŘ	< 0.05	0.00	8	0.00E + 00	AR
fron as Fe	9000	59100	58509000	H:h	1,00E+02	R	34	38610	Hith	4.91E + 00	R	0.14	139	G	0.00E + 00	AR
Lead as Pb	100	26	25740	H:H	1.00E+02	R	< 0.02	0,00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AB
Manyanese as Mn	300	1200	1188000	H:H	1.00E+02	R	15	14850	H:H	9.99£+01	R	0.20	198	G	5.88E-06	иR
Mercury as Hg	22	< 5.0	4950	H:H	1,00E+02	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Nickel as Ni	1140	< 66	65340	H:H	1.00E + 02	R	< 0.13	0.00	G	0.00E+00	AR	< 0.13	0.00	€	0.00E + 00	ÁR
Selenium as Se	260	< 5.0	4950	H:H	8.96E+01	R	0.03	30	G	0.00E + 00	AR	< 0.02	0.00	6	0.00E + 00	AR
Silver as A	2000	< 10	9900	H:h	8.47£+00	R	< 0.02	0.00	9	0.00E + 00	AR	< 0.02	0.00	6	0.00E+00	Aff
Titatium as Ti	731	2642	2615580	H;H	1.00E+02	R	0.07	69	6	0.00E ± 00	AR	< 0.02	0.00	G	0.00E+00	AR
Vanadium as V	1300	<41	40590	H:h	9.87E+01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	AR
Zinc as Zn	7.00	13	12870	H:H	8.83E+01	R	< 0.02	0.90	G	0.00£+00	AR	< 0.04	0.00	G	0.00E+00	AR
Fluoride as F-	1500	160	15840 0	H:h	1.00E + 02	R	< 0.1	0.00	G	0.00£+00	AR	< 9.1	0.00	G	0.00E+00	AR
Waste Stream classifies: !	1:H / H:h / G	Worst	Case Scenario	- Mid			Worst	Case Scenario	.With			Worst	Case Scenario	G		
Risk to Environn	nent: R / AR	Risk t	o Environment	R		y R	Risk to	Environment	R		R	Risk to	Environment	AR		An



Draft for discussion CONFIDENTIAL Research for IVS

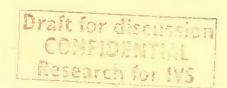
Table A-27

CLASSIFICATION SUMMARY: WASTE STREAM - DOLOCHAR + 1mm [Waste Characterization - Iscor Vanderbijlpark Steel]

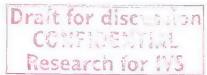
	Acc. Hisk		NAME OF V	VASTE S	TREAM: DO	DLOCK	IAR +1mm	1		VOLUME: 9,000,000 KG / MONTH								
INORGANIC	Walue	TO	TAL ANALYSI	S	5 PROBIT F	BUN	TCL	P EXTRACTION	M	5 PROBIT RUN		ACIO RAIN EXTRACTION			5 PROBIT RUN			
COMPOUNDS	(MR)	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quan-	Risk		
	ppb	ppm	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	RIAR	ppm	ppb	Site	fication %	R/A		
Aluminium as Al	1000	52400	311256000	Hah	1.00E+02	R	2.3	17226	H:h	2.94E-02	R	0.60	3564	G	5.66E-09	AR		
Arsenic as As	439	26	154440	H:R	1.00E ÷ 02	R	< 0.02	0.00	G	0.00€+00	AR	< 0.02	0.00	G	0.0DE+00	AR		
Barium as Ba	7801	443	2631420	H:h	1.00E+02	R	0.90	5346	6	8.71E-06	AR	0.23	1366	G	7.55E-13	AR		
Cadmium as Cd	31	8.6	51084	H:H	1.00E + 02	R	< 0.03	0.00	6	0.00E + 00	AR	< 0.03	0.00	G	0.00E+00	AR		
Cobalt as Co	6900	6.7	39798	H:H	1.41E+01	R	< 0.07	0.00	G	0.00E+00	AR	< 0.07	0.00	G	0.00E+00	AR		
Chromium ³⁺ as Cr ³⁺	4700	98	582120	Hith	1.00E+02	R	< 0.07	0.00	6	0.00E + 00	AR	< 0.07	0.00	8	0.00E + 0 0	AR		
Corper as Cu	100	8.0	47520	H:H	1.00E+02	R	< 0.05	0.00	G	0.00E+00	AR	< 0.05	0.00	G	0,00E+00	AR		
Iron as Fe	1000	78000	463320000	H:h	1.00E + 02	R	0.74	4396	6	2.23E-07	AR	< 0.05	0.00	G	9.00E + 0 0	AR		
Lead as Pb	100	43	255420	H:H	1.00E+02	H	0.02	119	H:H	1.60E-03	R	< 0.02	0.00	G	0.00E+00	AR		
Manyanese as Mn	300	1800	10692000	H:H	1.00E+02	R	0.13	713	H:H	2.49E-01	R	0.01	59	G	3.40E-12	AR		
Mercury as Hg	22	< 5.0	29700	H:H	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.09E + 80	AR		
Nickel as Ni	1140	< 66	392040	H:H	1.00E + 02	R	< 0.13	0.00	G	0.00E+00	añ	< 0.13	0.00	6	0.00E+00	AR		
Selenium as Se	260	< 5.0	29700	H:H	1.00E + 02	R	0.07	416	H:H	1.71E-02	R	< 0.02	0.00	G	0.00E + 00	AR		
Silver as Ag	2007	< 10	59400	H:h	9.83E+01	R	< 0.02	0.00	G	0.00£ + 00	AR	< 0.02	0.00	6	0.00E ± 00	AR		
Titatium as Ti	731	2820	16750800	H:H	1.00E + 02	R	0.09	535	G	1.71E-05	AR	< 0.02	0.00	6	0.00£+00	AR		
Vanadium as V	130	<41	243540	H:h	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR		
Zinc as Zn	700	18	106920	H:H	1.00E + 02	R	0.07	416	6	1.93E-06	AR	< 0.04	0.00	G	0.00E + 00	AR		
Fluoride as F-	1500	177	1051380		1.00E + 02	R	0.16	950	6	3.81E-06	AR	0.15	891	G	1.92E-06	Añ		
Vaste Stream classifies: H			Case Scenario	H:H				Case Scenario	H:H	المانية			Case Scenario					
Risk to Environm	ient: R / AR	Risk	to Environment	R	91	R	Risk to	Environment	R		18	Risk to	o Environment	AR		AR		

CLASSIFICATION SUMMARY: WASTE STREAM - BOF SLUDGE (MUD)

	Acc. Risk		WASTE S	TREAM I	NAME: BOF	SLUD	GE (MUD)	VOLUME: 3,000,000 KG / MONTH								
INORGANIC	Value	TO	TAL ANALYSI	S	5 PROBIT RUN		TCLP EXTRACTION			5 PROBIT	RUN	ACID RAIN EXTRACTION			5 PROBIT RUN	
COMPOUNDS	(IVIR)	² Lab Conc.	3 _{EEC}	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	3EEC	⁴ Disposal	Risk Quanti-	Risk	² Lab Conc.	³ EEC	⁴ Disposal	Risk Quan-	Risk
	ррь	ppm	ppb	Site	fication %	R / AR	ppm	ppb	Site	fication %	RIAR	ppm	րբե	Site	fication %	BIAR
Aluminium as Al	10000	11600	22968000	H:h	1.00E + 02	R	1.9	3762	G	1.08E-08	AR	< 0.15	0.00	G	0.00E+00	AR
Arsenic as As	430	46	91080	Н:Н	1.00E + 02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E+00	ÀR
Barium as Ba	7800	54	106920	H:h	7.31E+01	R	0.67	1327	6	5.22E-13	AR	D.15	297	G	0.00E+00	AR
Cadmium as Cd	31	22	43560	H:H	1.00E+02	R	0.05	99	H:H	1.29E+00	R	< 0.03	0.00	G	0.0 0E + 00	ÀR
Cobalt as Co	6900	22	43560	H:H	1.84E + 01	R	< 0.07	0.00	6	0.00E + 00	AR	< 0.07	0.00	G	0.00E + 00	AR
Chromium ³ * as Cr ³ *	4700	210	415800	H:h	1.00E + 02	R	< 0.07	0.00	G	0.00£ + 00	AB	< 0.07	0.00	G	0.00E+00	AR
Copper as Cu	100	42	83160	H:H	1.00E + 02	R	< 0.05	0.00	G	0.00E + 00	AR	< 0.05	0.00	G	0.00E ÷ 00	AR
Iron as Fe	9000	554000	1096920000	H:h	1.00E + 02	R	629	1245420	H:h	1,00E + 02	R	0.28	554	G	0.00E +00	AR
Lead as Pb	100	48	95040	H:H	1.00E + 02	R	0.03	59	G	1.79E-06	AR	< 0.02	0.00	G	0.00£+00	AR
Manyanese as Mn	300	10900	21582000	H:H	1.00E + 02	R	54	106920	H:H	1.00E + 02	R	0.04	79	G	1.38E-10	AR
Mercury as Hy	22	< 5.0	9900	Н:Н	1.00E + 02	R	< 0.02	0.00	G	0.00£+00	AR	< 0.02	0.00	G	0.00E+00	AS
Nickel as Ni	%1140	< 86	130680	Н:Н	1.00E + 02	R	< 0.13	0.00	G	0.00E + 00	AR	< 0.13	0.00	G	0.00E + 00	AR
Selenium as Se	260	< 5.0	9900	H:H	9.96E + 01	R	< 0.02	0.00	G	0.00E+00	AR	< 0.02	0.00	G	0.00E + 00	AR
Silver as Ag	2000	< 10	19800	H:h	4.92E + 01	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Titatium as Ti	731	700	1386000	H:H	1.00E + 02	R	0.07	139	G	2.20E-12	AR	< 0.02	0.00	G	0.00E+00	AR
Vanadium as V	1300	< 41	81180	H:h	1.00E+02	R	< 0.02	0.00	G	0.00E + 00	AR	< 0.02	0.00	G	0.00E + 00	AR
Zinc as Zn	700	5508	10905840	Н:Н	1.00E + 02	R	1:0	1980	H:H	6.79E-01	R	< 0.04	0.00	G	0.00E+00	AR
Fluoride as F-	1500	411	813780	H:h	1.00E + 02	R	2.7	5346	H:h	2.19E+00	R		6930	H:h	6.56E + 00	R
Waste Stream classifies:			Case Scenario	H:H,				Case Scenario	H:H				Case Scenario	H:h		
Risk to Environ	ment: R / AR	Risk	to Environment	R		R	Risk to	Environment	R		R	Risk to	Environment	R		R



APPENDIX C

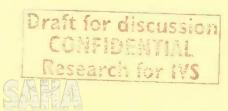

AREA (HECTARE) REQUIRED FOR DISPOSAL OF ISCOR VANDERBIJLPARK
STEEL SOLID WASTE CALCULATIONS ACCORDING TO TOTAL LOAD PRINCIPLE

- TCLP MOBILITY (INCLUDING SLAGS)

TABLE B-1

Table B-1

AREA (HECTARE) REQUIRED FOR DISPOSAL OF ISCOR VANDERBIJLPARK STEEL SOLID WASTE CALCULATIONS ACCORDING TO TOTAL LOAD PRINCIPLE - TCLP MOBILITY (INCLUDING SLAGS)


	Al	Ва	Cd	Fe	Ph	Min	Zn	E F
ACCEPTABLE RISK (e/ha)	15152	11818	46.9	13636	152	454	1061	2273
TOTAL LOAD (g/ha)	1515200	1181800	4697	1363600	15200	45400	106100	2 27300
WASTE SITE: H:H / H:h	At .	Ва	Cd	Fe	Pb	Min	Zn	E-
WASTE STREAM NAME	g/m	g/m	g/m	g/m	g/m	g/m	g/m	g/m
BOF SLAG (COURSE)	57750	84000	0.00	5915000	2800	3850000	2800	105000
EAF BAGHOUSE DUST	4350	600	185	0.00	90	55500	76500	19500
BOF BAGHOUSE 2 DUST	740	130	0.00	96	0.00	4	64	4000
BOF BAGHOUSE 3 DUST	230	33	15	19	2	4200	12600	800
CONTINEOUS CASTER V3 SLUDGE	0.00	9.92	6.2	28861	2.17	80.6	4.34	6.2
BF D DUST	27740	3496	0.00	11400	304	91200	21660	7600
BF SLUDGE	109800	2416	146	70760	3660	158600	397720	195
DR PRODUCT DUST	67500	13230	0.00	0.00	0.00	621000	2160	810
DR WET SCRUBBER MUD	61	95.1	0.00	0.00	1.9	475	5.8	19.
EAF SLAG	378000	13650	0.00	168000	630	630000	630	2100
VAALDAM SLUDGE	0.00	1680	0.00	0.00	100	1220	240	0.0
DOLOCHAR -1mm	3150	915	0.00	58500	0.00	22500	0.00	0.0
DOLOCHAR + 1mm	26100	8100	0.00	6660	180	1080	630	1440
BOF SLUDGE (MUD)	5700	2010	150	1887000	90	162000	3000	810
TOTAL (g/m)	681121	130365	482	8146296	7860	5597860	518014	158618
TOTAL (glyr.)	8173452	1564380	5786	97755552	94321	67174315	6216170	190341
(A) HECTARES REQUIRED (ha/yr.)	5.4	1.3	1.2	71.7	6.2	1480	58.6	8.4
WASTE SITE: 0								
LADLE FURNACE 1&2 BAGHOUSE DUST	39	7.3	0.00	0.00	6.6	0.500	1.3	122
BOF BAGHOUSE 1 DUST	250	13	0.00	10	3	11	16	90
FOUNDRY CYCLONE DUST	21	1.6	0.00	80	0.00	84	1.12	2.
TOTAL (g/m)	310	21.9	0.00	90	9.6	95.5	18.42	2122.
TOTAL (g/yr.)	3720	263	0.00	1080	115	1146	221	25468.
(B) HECTARES REQUIRED (hajyr.)	0.002	0.0002	0.00	0.0008	0.008	0.025	0.002	0.11
(A+ B) TOTAL HECTARES REQUIRED (halyr.)	5.4	1.3	1.2	71.7	6.2	1480	58.6	8.

APPENDIX C

AREA (HECTARE) REQUIRED FOR DISPOSAL OF ISCOR VANDERBIJLPARK
STEEL SOLID WASTE CALCULATIONS ACCORDING TO TOTAL LOAD PRINCIPLE

- ACID RAIN (MONO DISPOSAL) (INCLUDING SLAGS)

TABLE B-2

Table B-2 Research for Area (Hectare) required for disposal of Iscor vanderbijlpark steel solid waste calculations ACCORDING TO TOTAL LOAD PRINCIPLE - ACID RAIN (MONO DISPOSAL) (INCLUDING SLAGS)

WASTE SITE: H-H / H-h 61 Ba Cd Fe Pb Min Zu WASTE STREAM NAME g/m		Al	Ba	Cd	Fe	Pb	Mn	Zn	F.
WASTE SITE: H-H / H-h Al Ba Cd Fe Pb Man Zn WASTE STREAM NAME g/m g/	ACCEPTABLE RISK (a/ha)	15152	11818	46.9	13636	152	454	1061	2273
WASTE STIRCAN MAME g/m y/m g/m g/m g/m g/m g/m g/m g/m g/m g/m g	TOTAL LOAD (g/ha)	1515200	1181800	4697	1363600	15200	45 400	106100	22730 0
BOF SLAG (COURSE)		Al	Ba	Cd	Fe	РЬ	Mn	Zn	F.
BF D DUST 1282 950 0.00 3420 76 18820 760 BF SLUDGE 0.00 732 0.00 195 0.00 24400 7808 DR PRODUCT DUST 7580 4880 0.00 2430 0.00 1080 1620 EAF SLAG 0.00 1880 0.00 830 0.00 23100 0.00 BOF SLUDGE (MUD) 0.00 450 0.00 870 0.00 120 0.00 TOTAL (glm) 17602 23882 0.00 31345 76 154820 10188 TOTAL (glyr.) 211224 282844 0.00 376140 912 1857840 122256 (A) HECTARES REQUIRED (halyr.) 0.139 0.239 0.00 0.276 0.060 40.9 1.2 WASTE SITE: G EAF BAGHOUSE DUST 0.00 60 0.00 315 0.00 30 0.00 LADLE FURNACE 18.2 BAGHOUSE DUST 19 2.7 0.00 0.800 5.4 0.300 0.00 BOF BAGHOUSE 3 DUST 420 11 0.00 48 0.00 0.00 0.00 BOF BAGHOUSE 1 DUST 130 7 0.00 48 0.00 0.00 45 BOF BAGHOUSE 1 DUST 130 7 0.00 21 6 32 0.00 EOWITINEOUS CASTER V3 SLUDGE 0.00 4 0.00 5301 1.24 7.44 0.00 FOUNDRY CYCLONE DUST 1,4 0.560 0.00 3.58 0.00 2.32 0.160 DR WET SCRUBBER MUD 0.00 420 0.00 5.82 0.00 6.79 0.00 DOLOCHAR - Imm 420 380 0.00 5.89 21.6 438 45 TOTAL (glm) 6730 3054 0.00 589 21.6 438 45 TOTAL (glm) 6730 3054 0.00 5.89 21.6 438 45 TOTAL (glm) 6730 3054 0.00 71991 260 5866 541.92	WASTE STREAM NAME	g/m	gim	g/m	g/m	g/m	g/m	g/m	g/m
BF SLUDGE	BOF SLAG (COURSE)	8750	14700	0.00	23800	0.00	87500	0.00	10500
DR PRODUCT DUST 7580 4860 0.00 2430 0.00 1080 1620 EAF SLAG 0.00 1890 0.00 630 0.00 23100 0.00 BUF SLUDGE (MUD) 0.00 450 0.00 870 0.00 120 0.00 TOTAL (glm) 17602 23582 0.00 31345 76 154820 10188 TOTAL (glyr.) 211224 282984 0.00 375140 912 1857840 122256 (A) HECTARES REQUIRED (halyr.) 0.139 0.239 0.00 0.276 0.060 40.9 1.2 WASTE SITE: G EAF BAGHOUSE DUST 0.00 60 0.00 315 0.00 30 0.00 LADLE FURNACE 182 BAGHOUSE DUST 19 2.7 0.00 0.900 5.4 0.300 0.00 BOF BAGHOUSE 2 DUST 340 70 0.00 48 0.00 0.00 0.00 BOF BAGHOUSE 3 DUST 420 11 0.00 94 9.00 0.00 45 BOF BAGHOUSE 1 DUST 130 7 0.00 21 8 32 0.00 CONTINEOUS CASTER V3 SLUDGE 0.00 4 0.00 5301 1.24 7.44 0.00 FOUNDRY CYCLONE DUST 1.4 0.560 0.00 3.55 0.00 2.32 0.00 VALDAM SLUDGE 0.00 420 0.00 0.00 9.00 0.20 DOLOCHAR - Imm 420 380 0.00 589 21.6 489 45 TOTAL (glyr.) 80764.8 36645 0.00 71991 260 5866 541.92 (8) HECTARES REQUIRED (halyr.) 80764.8 36645 0.00 71991 260 5866 541.92 (8) HECTARES REQUIRED (halyr.) 0.053 0.017 0.129 0.005	BF D DUST	1292	950	0.00	3420	76	18620	760	14820
EAF SLAG	BF SLUDGE	0.00	732	0.00	195	0.00	24400	7808	19276
BOF SLUDGE (MUD) 0.00 450 0.00 870 0.00 120 0.00 101	DR PRODUCT DUST	7560	4860	0.00	2430	0.00	1080	1620	10800
TOTAL (g/m) 17602 23582 0.00 31345 76 154820 10188 TOTAL (g/yr.) 211224 282984 0.00 376140 912 1857840 122256 (A) HECTARES REQUIRED (ha/yr.) 0.138 0.239 0.00 0.276 0.060 40.9 1.2 WASTE SITE: G EAF BAGHOUSE DUST 0.00 80 0.00 315 0.00 30 0.00 LADLE FURNACE 182 BAGHOUSE DUST 19 2.7 0.00 0.900 5.4 0.300 0.00 BOF BAGHOUSE 2 DUST 340 70 0.00 48 0.00 0.00 0.00 0.00 BOF BAGHOUSE 3 DUST 420 11 0.00 94 9.00 0.00 45 BOF BAGHOUSE 1 DUST 130 7 0.00 21 6 32 0.00 CONTINEOUS CASTER V3 SLUDGE 0.00 4 0.00 5301 1.24 7.44 0.00 FOUNDRY CYCLONE DUST 1.4 0.560 0.00 3.66 0.00 2.32 0.160 DR WET SCRUBBER MUD 0.00 18.43 0.00 5.82 0.00 6.79 0.00 VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 0.00 DOLOCHAR -1mm 420 390 0.00 210 0.00 300 0.00 DOLOCHAR +1mm 5400 2070 0.00 0.00 90 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866 541.92 (8) HECTARES REQUIRED (ha/yr.) 0.055 0.031	EAF SLAG	0.00	1890	0.00	630	0.00	23100	0.00	0.00
TOTAL (g/yr.) (A) HECTARES REQUIRED (halyr.) (B) HECTARES REQUIRED (halyr.) (C) 138 (C) 28984 (C) 0.00 (C) 0.060 (BOF SLUDGE (MUD)	0.00	450	0.00	870	0.00	120	0.00	10500
(A) HECTARES REQUIRED (halyr.) (B) HECTARES REQUIRED (halyr.) (C) HASTE SITE: G EAF BAGHOUSE DUST (C) LADLE FURNACE 182 BAGHOUSE 1 DUST (C) LADLE FURNACE 182 BAGHOUSE 1.00 (C)	TOTAL (g/m)	17602	23582	0.00	31345	76	154820	10188	65896
WASTE SITE: G EAF BAGHOUSE DUST	TOTAL (glyr.)	211224	282984	0.00	376140	912	1857840	122256	790752
EAF BAGHOUSE DUST 0.00 60 0.00 315 0.00 30 0.00 LADLE FURNACE 1&2 BAGHOUSE DUST 19 2.7 0.00 0.900 5.4 0.300 0.00 BOF BAGHOUSE 2 DUST 340 70 0.00 48 0.00 0.00 0.00 BOF BAGHOUSE 3 DUST 420 11 0.00 94 9.00 0.00 45 BOF BAGHOUSE 1 DUST 130 7 0.00 21 6 32 0.00 CONTINEOUS CASTER V3 SLUDGE 0.00 4 0.00 5301 1.24 7.44 0.00 FOUNDRY CYCLONE DUST 1.4 0.560 0.00 3.56 0.00 2.32 0.160 DR WET SCRUBBER MUD 0.00 18.43 0.00 5.82 0.00 6.79 0.00 VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 20 0.00 DOLOCHAR + 1mm 420 390 0.00 210 0.00 300 0.00 TOTAL (g/m) 6730 3054 0.00 5899 <	(A) HECTARES REQUIRED (ha/yr.)	0.139	0.239	0.00	0,276	0.060	40.9	1.2	3.5
LADLE FURNACE 1&2 BAGHOUSE DUST 19 2.7 0.00 0.900 5.4 0.300 0.00 BOF BAGHOUSE 2 DUST 340 70 0.00 48 0.00 0.00 0.00 BOF BAGHOUSE 3 DUST 420 11 0.00 94 9.00 0.00 45 BOF BAGHOUSE 1 DUST 130 7 0.00 21 6 32 0.00 CONTINEOUS CASTER V3 SLUDGE 0.00 4 0.00 5301 1.24 7.44 0.00 FOUNDRY CYCLONE DUST 1.4 0.560 0.00 3.56 0.00 2.32 0.160 DR WET SCRUBBER MUD 0.00 18.43 0.00 5.82 0.00 6.79 0.00 VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 20 0.00 DOLOCHAR · 1mm 420 390 0.00 210 0.00 300 0.00 TOTAL (g/m) 6730 3054 0.00 5899 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991	WASTE SITE: G								
BOF BAGHOUSE 2 DUST 340 70 0.00 48 0.00 0.00 0.00 BOF BAGHOUSE 3 DUST 420 11 0.00 94 9.00 0.00 45 BOF BAGHOUSE 1 DUST 130 7 0.00 21 6 32 0.00 CONTINEOUS CASTER V3 SLUDGE 0.00 4 0.00 5301 1.24 7.44 0.00 FOUNDRY CYCLONE DUST 1.4 0.560 0.00 3.56 0.00 2.32 0.160 DR WET SCRUBBER MUD 0.00 18.43 0.00 5.82 0.00 6.79 0.00 VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 20 0.00 DOLOCHAR - 1mm 420 390 0.00 210 0.00 300 0.00 DOLOCHAR + 1mm 5400 2070 0.00 0.00 90 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866	EAF BAGHOUSE DUST	0.00	60	0.00	315	0.00	30	0.00	150
BOF BAGHOUSE 3 DUST 420 11 0.00 94 9.00 0.00 45 BOF BAGHOUSE 1 DUST 130 7 0.00 21 6 32 0.00 CONTINEOUS CASTER V3 SLUDGE 0.00 4 0.00 5301 1.24 7.44 0.00 FOUNDRY CYCLONE DUST 1.4 0.580 0.00 3.56 0.00 2.32 0.160 DR WET SCRUBBER MUD 0.00 18.43 0.00 5.82 0.00 6.79 0.00 VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 20 0.00 DOLOCHAR - 1mm 420 380 0.00 210 0.00 300 0.00 DOLOCHAR + 1mm 5400 2070 0.00 0.00 0.00 300 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866 541.92 (B) HECTARES REQUIRED (ha/yr.) 0.053 0.031 0.005 0.005	LADLE FURNACE 1&2 BAGHOUSE DUST	19	2.7	0.00	0.900	5.4	0.300	0.00	80
B0F BAGHOUSE 1 DUST 130 7 0.00 21 6 32 0.00 CONTINEOUS CASTER V3 SLUDGE 0.00 4 0.00 5301 1.24 7.44 0.00 FOUNDRY CYCLONE DUST 1.4 0.560 0.00 3.56 0.00 2.32 0.160 DR WET SCRUBBER MUD 0.00 18.43 0.00 5.82 0.00 6.79 0.00 VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 20 0.00 DOLOCHAR - 1mm 420 390 0.00 210 0.00 300 0.00 DOLOCHAR + 1mm 5400 2070 0.00 0.00 0.00 90 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (glyr.) 80764.8 36645 0.00 71991 260 5866 541.92 (B) HECTARES REQUIRED (halyr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	BOF BAGHOUSE 2 DUST	340	70	0.00	48	0.00	0.00	0.00	1540
CONTINEOUS CASTER V3 SLUDGE 0.00 4 0.00 5301 1.24 7.44 0.00 FOUNDRY CYCLONE DUST 1.4 0.560 0.00 3.56 0.00 2.32 0.160 DR WET SCRUBBER MUD 0.00 18.43 0.00 5.82 0.00 6.79 0.00 VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 20 0.00 DOLOCHAR · 1mm 420 390 0.00 210 0.00 300 0.00 DOLOCHAR + 1mm 5400 2070 0.00 0.00 0.00 90 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866 541.92 (B) HECTARES REQUIRED (halyr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	BOF BAGHOUSE 3 DUST	420	11	0.00	94	9.00	0.00	45	360
FOUNDRY CYCLONE DUST 1.4 0.560 0.00 3.56 0.00 2.32 0.160 DR WET SCRUBBER MUD 0.00 18.43 0.00 5.82 0.00 6.79 0.00 VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 20 0.00 DOLOCHAR · 1mm 420 390 0.00 210 0.00 300 0.00 DOLOCHAR + 1mm 5400 2070 0.00 0.00 0.00 90 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866 541.92 (B) HECTARES REQUIRED (ha/yr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	BOF BAGHOUSE 1 DUST	130	7	0.00	21	6	32	0.00	830
DR WET SCRUBBER MUD 0.00 18.43 0.00 5.82 0.00 6.79 0.00 VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 20 0.00 DOLOCHAR · 1mm 420 390 0.00 210 0.00 300 0.00 DOLOCHAR + 1mm 5400 2070 0.00 0.00 0.00 90 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866 541.92 MECTARES REQUIRED (ha/yr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	CONTINEOUS CASTER V3 SLUDGE	0.00	4	0.00	5301	1.24	7.44	0.00	0.00
VAALDAM SLUDGE 0.00 420 0.00 0.00 0.00 20 0.00 DOLOCHAR · 1mm 420 390 0.00 210 0.00 300 0.00 DOLOCHAR + 1mm 5400 2070 0.00 0.00 0.00 90 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866 541.92 AB) HECTARES REQUIRED (ha/yr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	FOUNDRY CYCLONE DUST	1.4	0.560	0.00	3.56	0.00	2.32	0.160	2.3
DOL OCHAR · 1mm 420 390 0.00 210 0.00 300 0.00 DOL OCHAR + 1mm 5400 2070 0.00 0.00 0.00 90 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866 541.92 AB) HECTARES REQUIRED (ha/yr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	DR WET SCRUBBER MUD	0.00	18.43	0.00	5.82	0.00	6.79	0.00	0.00
DOLOCHAR + 1mm 5400 2070 0.00 0.00 0.00 90 0.00 TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (glyr.) 80764.8 36645 0.00 71991 260 5866 541.92 (B) HECTARES REQUIRED (halyr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	VAALDAM SLUDGE	0.00	420	0.00	0.00	0.00	20	0.00	0.00
TOTAL (g/m) 6730 3054 0.00 5999 21.6 489 45 TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866 541.92 IB) HECTARES REQUIRED (ha/yr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	DOLOCHAR -1mm	420	390	0.00	210	0.00	300	0.00	0.00
TOTAL (g/yr.) 80764.8 36645 0.00 71991 260 5866 541.92 (B) HECTARES REQUIRED (ha/yr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	DOLOCHAR + 1mm	5400	2070	0.00	0.00	0.00	90	0.00	1350
(8) HECTARES REQUIRED (halyr.) 0.053 0.031 0.00 0.053 0.017 0.129 0.005	TOTAL (g/m)	6730	3054	0.00	5999	21.6	489	45	4312.3
	TOTAL (glyr.)	80764.8	36645	0.00	71991	260	5866	541.92	51747.6
	(8) HECTARES REQUIRED (halyr.)	0.053	0.031	0.00	0,053	0.017	0.129	0.005	0.228
(A+ B) TOTAL HECTARES REQUIRED (ha/yr.) 0.193 0.270 0.000 0.3 0.077 41 1.2	(A+ R) TOTAL HECTARES REQUIRED (halve)	D 193	0.270	0.000	ηa	D 077	41	1.2	3.7

APPENDIX C

AREA (HECTARE) REQUIRED FOR DISPOSAL OF ISCOR VANDERBIJLPARK
STEEL SOLID WASTE CALCULATIONS ACCORDING TO TOTAL LOAD PRINCIPLE

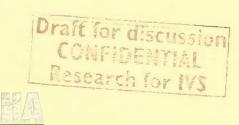
- TCLP MOBILITY (EXCLUDING SLAGS)

TABLE C-1

Table C-1

Research for 179 ACCORDING TO TOTAL LOAD PRINCIPLE - TCLP MOBILITY (EXCLUDING SLAGS)

	Al	Ba	Cd	Fe	Pb	Mn	Zn	Half-
ACCEPTABLE RISK (#/ha)	15152	11818	46.9	13636	152	454	1061	2273
TOTAL LOAD (g/ha)	1515200	1181800	4697	1363600	15200	45400	106100	227300
WASTE SITE: H:H / H:h	Al	Ва	Cd	Fe	Pb	Mn	Zn	F. 273
WASTE STREAM NAME	g/m	g m	gļm	g/m	g/m	g/m	g/m	g/m
EAF BAGHOUSE DUST	4350	600	165	0.00	90	55500	76500	19500
BOF BAGHOUSE 2 DUST	740	130	0.00	96	0.00	4	64	4000
BOF BAGHOUSE 3 DUST	230	33	15	19	2	4200	12600	800
CONTINEOUS CASTER V3 SLUDGE	0.00	9.92	6.2	28861	2.17	80.6	4.34	6.2
BF D DUST	27740	3496	0.00	11400	304	91200	21660	7600
BF SLUDGE	109800	2416	146	70760	3660	158600	397720	1952
DR PRODUCT DUST	67500	13230	0.00	0.00	0.00	621000	2160	8100
DR WET SCRUBBER MUD	61	95.1	0.00	0.00	1.9	475	5.8	19.4
VAALDAM SLUDGE	0.00	1680	0.00	0.00	100	1220	240	0.00
DOLOCHAR -1mm	3150	915	0.00	58500	0.00	22500	0.00	0.00
DOLOCHAR + 1mm	26100	8100	0.00	6660	180	1080	630	1440
BOF SLUDGE (MUD)	5700	2010	150	1887000	90	162000	3000	8100
TOTAL (g/m)	245371	32715	482	2063296	4430	1117860	514584	51518
TOTAL (g/yr.)	2944452	392580	5786	24759552	53161	13414315	6175010	618211
(A) HECTARES REQUIRED (ha/yr.)	1.94	0.332	1.23	18.2	3.50	295	58.2	2.72
WASTE SITE: G								
LADLE FURNACE 1&2 BAGHOUSE DUST	39	7.3	0.00	0.00	6.6	0.500	1.3	1220
BOF BAGHOUSE 1 DUST	250	13	0.00	10	3	11.	16	900
FOUNDRY CYCLONE DUST	21	1.6	0.00	80	0.00	84	1.12	2.4
TOTAL (g/m)	310	21.9	0.00	90	9.6	95.5	18.42	2122.4
TOTAL (g/yr.)	3720	263	0.00	1080	115	1146	221	25468.8
(B) HECTARES REQUIRED (ha/yr.)	0.002	0.0002	0.00	0.0008	0,008	0.025	0.002	0.112
(A+ B) TOTAL HECTARES REQUIRED (halyr.)	1.95	0.332	1.23	18.2	3.51	295	58.2	2.8



APPENDIX C

AREA (HECTARE) REQUIRED FOR DISPOSAL OF ISCOR VANDERBIJLPARK
STEEL SOLID WASTE CALCULATIONS ACCORDING TO TOTAL LOAD PRINCIPLE

- ACID RAIN (MONO DISPOSAL) (EXCLUDING SLAGS)

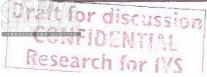
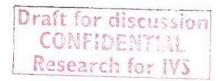

TABLE C-2

Table C-2

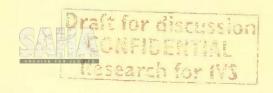
AREA (HECTARE) REQUIRED FOR DISPOSAL OF ISCOR VANDERBIJLPARK STEEL SOLID WASTE CALCULATIONS ACCORDING TO TOTAL LOAD PRINCIPLE - ACID RAIN (MONO DISPOSAL) (EXCLUDING SLAGS)

	Al	Ва	Cd	Fe	Pb	Mn	Zn	
ACCEPTABLE RISK (clha)	15152	11818	46.9	13636	152	454	1061	2273
TOTAL LOAD (g/ha)	1515200	1181800	4697	1363600	15200	45400	106100	227300
WASTE SITE: H:H / H:h	Al	Ba	Cd	Fe	Pb	Mn	Zn	F.
WASTE STREAM NAME	g/m	gľm	g/m	g/m	gļm	g/m	gim	g/m
8F D DUST	1292	950	0.00	3420	76	18620	760	14820
BF SLUDGE	0.00	732	0.00	195	0.00	24400	7808	19276
DR PRODUCT DUST	7560	4860	0.00	2430	0.00	1080	1620	10800
BOF SLUDGE (MUD)	0.00	450	0.00	870	0.00	120	0.00	10500
TOTAL (g/m)	8852	6992	0.00	6915	76	44220	10188	55396
TOTAL (g/yr.)	106224	83904	0.00	82980	912	530640	122256	664752
(A) HECTARES REQUIRED (ha/yr.)	0.070	0.071	0.00	0.06	0.060	11.7	1.15	2.92
WASTE SITE: G								
EAF BAGHOUSE DUST	0.00	60	0.00	315	0.00	30	0.00	150
LADLE FURNACE 1&2 BAGHDUSE DUST	19	2.7	0.00	0.900	5.4	0.300	0.00	80
BOF BAGHOUSE 2 DUST	340	70	0.00	48	0.00	0.00	0.00	1540
BOF BAGHDUSE 3 DUST	420	11	0.00	94	9.00	0.00	45	360
BOF BAGHOUSE 1 DUST	130	7	0.00	21	6	32	0.00	830
CONTINEOUS CASTER V3 SLUDGE	0.00	4	0.00	5301	1.24	7.44	0.00	0.00
DR WET SCRUBBER MUD	0.00	18.43	0.00	5.82	0.00	6.79	0.00	0.00
FOUNDRY CYCLONE DUST	1.4	0.560	0.00	3.56	0.00	2.32	0.160	2.3
VAALDAM SLUDGE	0.00	420	0.00	0.00	0.00	20	0.00	0.00
DOLOCHAR -1mm	420	390	0.00	210	0.00	300	0.00	0.00
DDLOCHAR + 1mm	5400	2070	0.00	0.00	0.00	90	0.00	1350
TOTAL (g/m)	6730	3054	0.00	5999	21.6	489	45	4312.3
TOTAL (g/yr.)	80764.8	36645	0.00	71991	260	5866	541.92	51747.8
(B) HECTARES REQUIRED (ha/yr.)	0.053	0.031	0.00	0.053	0.017	0.129	0.005	0.228
(A+ B) TOTAL HECTARES REQUIRED (ha/yr.)	0.123	0,102	0.000	0.11	0.077	11.8	1.16	3.15



SAMPLING/MONITORING AND LABORATORY ANALYSIS DETAILS: WASTE STREAMS

TYPE	OFT/ISCOR	DATE	DATE		IE OF Atory		
OF SAMPLES	SAMPLING DATE	DELIVERED AT LAB	COMPLETED By Lab	SGS SA (PTY) LTD	POLTECH	REPORT Number	DESCRIPTION OF SAMPLES! LABORATORY ANALYSIS
NASTE STREAMS							
(1 - 30) - Inorganic	16 till 18-08-2000	18-08-2000	9-11-2000	Yes		2290-1Z	Samples: 1 - 30 = 30 samples - Inorganic Micro's
1 - 30) - Organic	16 till 18-08-2000		18-11-2000		Yes	DL NO. 2290-1	Samples: 1 - 30 = 30 samples - Organic PAH's & VOC's on TCLP EXTRACT
(1 - 8) - Inorganic	2-11-2000	3-11-2000	22-01-2001	Yes		2809·1Z	Samples: 1 · 8 = 8 samples · Inorganic Micro's
(1 - 8) · Organie	2-11-2000	11-12-2000	14-12-2000	*Yes		2846	Samples: 1 · 8 = 8 samples · Organic PAH's & VOC's on TCLP EXTRACT


*Yes = SGS LAB NOT ACCRREDITED FOR VOC & PAH ANALYSES PERFORMED

APPENDIX D

LABORATORY ANALYSIS: INORGANIC

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No:

2507 E Mail: denise_adams@sgsgroup.com

Date Received: 18/08/00

				Page: 1 of 9
NALYSI	s	FLOW SLAG (FINE) B/FURNACE H72	FLOW SLAG (COARSE) B/FURNACE	BOF SLAG WITH SULPHUR
\g	ppm	22	<10	98
AL.	%	3.89	2.64	3.40
\s	ppm	<12	<12	<12
3a	ppm	288	453	159
d	ppm	<10	<10	<10
Co	ppm	5.0	7.8	5.2
)r	ppm	1282	8121	1621
) u	ppm	14	60	24
е	%	16.0*	22.3*	20.0"
łg	ppm	<5.0	<5.0	<5.0
∕in	%	3.04	5.85	2.99
li i	ppm	<65	<66	<66
25	ppm	<18	<18	<18
ie	ppm	<5.0	<5.0	<5.0
1	ppm	3023	4026	2706
/	ppm	229	454	212
In	ppm	19	64	65
-	g/100g	1.89	1.07	2.26
1/455	& Names	O BOF Sloa (Fire)	@ KOF Slos (Course)	3 Desulphurisotic
		J	S	5/00
		Toble A-1	Table A-2	766/e 17-3
			I I I	is tou discussion
				It for discussion ONFIDENTIAL
				esearch for IVS
				esearch for 173

^{1.} Test results relate only to the items tested.

NOTE: *Better by wet chem.

2. This report shall not be reproduced except in full without the written approval of the

Date: 13/11/00

^{3.} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8

Tel: +2/11 811 2280/8 Telefax: +27 11 811 4670

DI No: 246707 denise_adams@sgsgroup.com

Date Received: 18/08/00

Description: HEAD ANALYSIS (27)

ANALYSIS		BOF SLAG WITHOUT SULPHUR	EAF BAGHOUSE DUST	LADLE F/NACE 1&2 BAGHOUSE DU		
g	ppm	<10	14	<10		
d.	%	2,68	0.59	2.44		
s	ppm	<12	22	24		
a	ppm	52	106	52		
d	ppm	<10	<10	<10		
o	ppm	3,8	8.1	4.0		
r	ppm	827	658	99		
iu .	ppm	<2.0	551	148		
e	%	20.9"	46.2*	11.2*		
lg	ppm	<5.0	<5.0	<5.0		
ใก	%	4.06	3.67	1.98		
li	ppm	<66	<66	<66		
Ь	ppm	<18	1189	103		
е	ppm	<5.0	<5.0	<5.0		
1	ppm	2983	552	117		
	ppm	263	50	<41		
n	ppm	12	2.64%	814		
-	g/100g	1.42	2.26	37,93		
		Table A-4	Jable A.5	6 Ladle furnace 1 E 2 Bookouse dus Table A-6		
			7 4412 11 3	14012 11 6		
				Draft for discussic CONFIDENTIAL Research for IVS		

^{1.} Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

Date : 13/11/00

debrug

tokal

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

0040 ATT: DR H O FOURIE

FAX:012 348 7436/TEL:348 9732

DI No: 2290Z denise_adams@sgsgroup.com

Date Received: 18/08/00

Description: HEAD ANALYSIS (27)

				Page:3 of 9
ANALYSIS	41	BOF SECONDARY 3 DEGASSING DUST	BOF SECONDARY 2 DEGASSING DUST	BOF SECONDARY 1 DEGASSING DU
Ag .	ppm	13	<10 🗸	20
Al	%	0.99	0.52	1.24
As	ppm	79	22	19
Ва	ppm	44	17	26
Cd	ppm	<10	<10	<10
7. 0	ppm	6.9	4.4	11
Qr .	ppm	62	90	1.02%
Cu	ppm	15	22	42
Fe	%	31.1*	56.1°	15.1*
Hig	ppm	<5.0	<5.0	<5.0
Mn	%	0.31	1.02	12.7
Ni	ppm	<66	<66	<66
Pb	ppm	<18	361	62
Se	ppm	<5.0	<5.0	<5.0
Ti	ppm	1742	720	551
V	ppm	<41	<41	150
Zn	ppm	1268	1.02%	406
F-	g/100g	5.93	2.23	19.44
		3 BOF Bookouse 2 Dust	8) BOF Bookouse 3 Dust	A BOF Baghouse 1 Du
1				
		Toble A-7	Toble A-8	Table A-9
				raft for discussion CONFIDENTIAL Research for IVS

^{1.} Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

Date : 13/11/00

adony

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA

Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No:

4670 22777 danise_adams@sgsgroup.com

Date Received: 18/08/00

Description:

HEAD ANALYSIS (27)

Page: 4 of 9

To: OCKIE FOURIE TOXICOLOGISTS PTY P O BOX 73179 LYNNWOOD RIDGE 0040 ATT: DR H O FOURIE FAX:012 348 7436/TEL:348 9732

ANALYS	SIS	BOF WET SCRUBBER 1,283 SLUDGE	BOF RHOB DUST	C/NEOUS CASTER V3 SCALE SLUDG
Ag	pþm	<10	19	<10
Al	%	0.60	2,30	<0.04
As	ppm	<12	15	<12
Ва	ppm	14	23	20
Cd	ppm	<10	<10	<10
Co	ppm	5.2	4.6	9.6
Çr .	ppm	133	1045	233
Сш	ppm	24	49	36
-e	%	77.8*	11.0*	73.1*
ig	ppm	<5.0	<5.0	<5.0
Mn	%	1.00	10.3	0.14
Νi	ppm	<66	<65	<65
РЬ	ppm	<18	87	<18
Se .	ppm	<5.0	<5,0	<5.0
ī	PPM	470	292	179
V	ppm	57	120	<41
Zn	ppm	307	371	14
÷	g/100g	1.51	18.45	0,94
		O BOF SAID TAGLE A-23	Dust U	(B) Contineous Cost
		TACLE A-23		V3 Sludue Table A-10
	-			<i>X</i>
			En Kill	AFIDENTIAL earch for IVS

1. Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

3. Issued in accordance with standard terms and conditions

Date: 13/11/00

CERTIFICATE OF ANALYSIS

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

0040

ATT: DR H O FOURIE

FAX:012 348 7436/TEL:348 9732

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07

P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

Telefax: +27 11 811 4670
4670
27841. denise_adams@sgsgroup.com

Date Received: 18/08/00

DI No :

Description: HEAD ANALYSIS (27)

Page: 5 of 9

ANALY	SIS	KCL DUST SINTER GRAVEL BED	SINTER DUST AG	SINTER DUST BG
Ag	ppm	<10	<10	<10
Al .	%	4.83	1.07	1.34
As	ppm	<12	<12	<12
Ва	ppm	1.1	200	234
Cd	ppm	<10	<10	<10
20	ppm	<2.0	5.9	7.0
Cr	ppm	<2.0	96	93
Cu	ppm	<2.0	8.2	10
Fe	%	3 28	41,4"	36.6⁵
Hg	ppm	<5.0	<5.0	<5.0
Mn	%	0.45	0.93	0.87
Ni	ppm	<66	<66	<66
РЬ	ppm	412	<18	<18
Se	ppm	<5.0	<5.0	<5.0
Ti	mqq	154	710	865
V	ppm	<41	<41	<41
Zn	ppm	395	36	48
F-	g/100g	1.71	0.96	1.05
		B) KCL DUST	1 SINTER AS 100	(15) SINTER BG 100
			DUST	oust
			Table A-11	(B) SINTER BG 100 Dust Table 17-121
			Neo	t for discussion
				ASSESSED TO THE PROPERTY OF TH
			5)	search for IVS
				pearen for sys

1. Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

3. Issued in accordance with standard terms and conditions

Date: 13/11/00

deBrug

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA

Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY DI No :

4670 2907 EMail. denise_adams@sgsgroup.com

Date Received: 18/08/00

Description: HEAD ANALYSIS (27)

ANALYSIS		SINTER DUST CG	BF C CYCLONE DUST	BF D.C/LONE DUST + WET SCRUB
Ag	ppm	<10	<10	<10
A.F	%	<0.04	1.16	1.38
As	ppm	<12	<12	<12
	ppm	7.8	281	182
Od	ppm	<10	<10	<10
7.0	ppm	3.5	5.3	8.9
	ppm	10	100	108
Du	ppm	<2.0	8.2	8.2
е	%	0.32	41.5°	28.2*
Hg	ppm	<5.0	<5.0	<5.0
√In	%	0.48	1.05	0,55
Ni	ppm	<66	<66	<66
Pb Pb	ppm	<18	<18	138
Se	ppm	39	<5.0	<5.0
П	ppm	36	1142	3475
/	ppm	<41	<41	<41
Zn	ppm	48	45	402
-	g/100g	1.05	1,18	1.35
		B) SINTER CC 100 DUST	(7) BF C DUST	(B) BF D Dust
		Table 17-13	Table 17-14	Tabk A-15
				it for discussion OMENDENTIAL Ascarch for IVS

^{1.} Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

3. Issued in accordance with standard terms and conditions

Date: 13/11/00

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8

Telefax: +27 11 811 4670

DI No:

24670 24747 denise_adams@sgsgroup.com

Date Received: 18/08/00

Description: HEAD ANALYSIS (27)

NALYSIS		BF C WET SCRUBBER SLUDGE	BE PRIME GRANULAR SLAG	BF DEGRADED GRANULAR SLAG
Ag	ppm	<10	<10	<10
41	%	1,60	6,98	. 8.28
As	ppm	32	23	18
За	ppm	282	1004	1197
)d	ppm	<10	<10	<10
Co	ppm	7.0	5.2	7.0
Or .	ppm	55	28	45
Cu	ppm	27	10	<2.0
e	9,6	32.3*	0.57	0.55
-lg	ppm	<5.0	<5.0	<5.0
/In	%	0.40	0.72	1,12
(i	ppm	<65	<66	<66
b	ppm	1352	67	57
Se .	ppm	<5.0	18	8.7
7	ppm	940	3467	4218
/	ppm	<41	<41	<41
Zn	ppm	7017	31	25
	g/100g	1,51	1.51	1.66
		@ BF SluggE	20) BF PRIME	an BF DESKADED
			Sconulated Slag	GRONUlosed Sla
		Table 17-16	Table A-17	1. able A-18
		7 9016 11 18	1 4012 11-11	1.4NIC 11 10
			Dr	aft for discussion
			1	escarch for ivs

1. Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

3. Issued in accordance with standard terms and conditions

Date: 13/11/00

debruy.

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE 0040

ATT: DR H O FOURIE

FAX:012 348 7436/TEL:348 9732

DI No: 22997 denise_adams@sgsgroup.com

Date Received: 18/08/00

Description: HEAD ANALYSIS (27)

Page: 8 of 9

ANALYS	SIS	ESP	DR WET SCRUBBER MUD	COKE OVEN SEMABLE PITCH
Ąg	ppm	<10	<10	<10
A)	%	7,52	3.70	0.10
As	ppm	18	12	18
Ва	ppm	616	270	12
Cd	mqq	<10	<10	15
20	ppm	10	7.0	8.8
Or	ppm	54	33	34
Ou	ppm	<2.0	<2.0	30
Fe	9/6	3,56	11.5*	5.11
Hg	ppm	<5.0	<5.0	45
Mn	%	0.08	0.07	0.04
Ni	ppm	<66	<56	<65
Pb	ppm	38	26	358
Se	ppm	<5.0	<5.0	<5,0
Ti	ppm	3890	2218	139
V	ppm	<41	<41	<41
Zn	ppm	9.8	29	1179
F-	g/100g	1.24	1,52	1,35
		25) DA PRODUCT DUST	ED DR WET SCRUBBER	(27) COKE DUEN
			MUD	SEMable PitcH
		Toble 17-19	Muo Toble A-20	
	•			
			Dr	
				COMPINED
			<u> </u>	19 Table 18 - 18

^{1.} Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

3. Issued in accordance with standard terms and conditions

Date: 13/11/00 (dobru

Bry

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O 8ox 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY P O BOX 73179 LYNNWOOD RIDGE 0040

4670 2 Mail. denise_adams@sgsgroup.com Date Received: 18/08/00

DI No:

ATT: DR H O FOURIE

Description: HEAD ANALYSIS (27)

FAX:012 348 7436/TEL:348 9732

ANALYSIS		ARC FURNACE SLAG HECKETT 85	CASTIRON CYCONE DUST	DRICYCLONE DUST
\g	ppm	<10	<10	<10
Al	%	7.10	1.80	0.89
\s	ppm	19	<12	<12
Ba	ppm	1007	120	260
Od	ppm	<10	<10	<10
Co	ppm	6.2	7.4	5.4
Or	ppm	33	2.89%	31
Du	ppm	<2.0	14	3.0
e	%	0.56	3.17	49,3*
-lg	ppm	<5.0	<5.0	<5.0
/In	5%	0.86	0.03	0.05
li .	ppm	<66	<66	<66
Pb D	ppm	54	173	<18
Se	ppm	<5.0	<5.0	<5,0
Ti .	ppm	3526	1591	360
/	ppm	<41	<41	<41
Zn	ppm	18	91	16
-	g/100g	1.23	1.48	1.16
		QR EAF SLAG	(29) FOUNDRY CYCLONE	BO DR ROW Moteris
			DUST	Dust
		Tape A-21	29 FOUNDRY CYCLONE DUST TABLE A-12	TORLE A-24
				rait for discussion
				CONTINUE (Continue)

1. Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

3. Issued in accordance with standard terms and conditions

Date: 13/11/00

DEPARTMENTAL MANAGER

To: OCKIE FOURIE TOXICOLOGISTS PTY

FAX-012 348 7436/TEL-348 9732

POBOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No :

4670 24901.17 Tenise_adams@sgsgroup.com

Date Received: 18/08/00

Description: ISCOR V/DBIJL (TCLP/ACID RAIN)

ANALYSIS		01 Flow slag (fine)Blst TCLP	02 Flow slag(coarse)Blst TCLP	03 BOF Slag with Sulphur TCLP
Ag	mg/l	<0.02	<0.02	<0.02
Al ·	mg/l	3.0	2.5	2.7
As	mg/l	<0.02	<0.02	<0.02
Ба	mg/l	0.42	2.4	0.45
Cd	mg/l	<0.03	<0.03	<0.03
2	mg/l	<0.07	<0.07	<0.07
Ст	mg/l	<0.07	<0.07	<0.07
Cu	mg/l	<0.05	<0.05	<0.05
Fe	mg/l	0.51	169	0.31
Hg	mg/l	<0.02	<0.02	<0.02
Mn	mg/l	0.10	110	0.24
Ni	mg/l	<0.13	<0.13	<0.13
Pb	mg/l	0.03	0,08	0.03
Se	mg/l	0.02	<0.02	0.03
Ті	mg/l	<0.02	0.03	0.03
V	mg/l	0.11	0.07	0,03
Zn	mg/l	<0.04	0.08	<0.04
F.	mg/l	2	3	8
Не	final	10.8	6.9	10.0
Noste	Nome >	O BOF Slou (Fine)	3 BOF Slag (Course)	3 Desulphurisation
	G.	Table A-1	Table 17-2	Slag U Table A-3
				est for discussion CONFIDENTIAL ASSESSMENT TONIVS

^{1.} Test results relate only to the items tested.

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No :

4670 24941.1 Zenise_adams@sgsgroup.com

Date Received: 18/08/00

Description:

ISCOR V/DBIJL (TCLP/ACID RAIN)

<0.02 1.5 <0.02 0.19 0.08 <0.07 <0.07 <0.05 0.40 <0.02 0.12 <0.13	<0.02 2.9 0.02 0.40 0.11 <0.07 1.8 <0.05 <0.05 <0.02	<0.02 3.9 0.02 0.73 <0.03 <0.07 <0.07 <0.05 <0.05 <0.02
<0.02 0.19 0.08 <0.07 <0.07 <0.05 0.40 <0.02 0.12	0.02 0.40 0.11 <0.07 1.8 <0.05 <0.05 <0.02	3.9 0.02 0.73 <0.03 <0.07 <0.07 <0.05 <0.02
0.19 0.08 <0.07 <0.07 <0.05 0.40 <0.02 0.12	0.40 0.11 <0.07 1.8 <0.05 <0.05 <0.02	0.73 <0.03 <0.07 <0.07 <0.05 <0.05 <0.02
0.08 <0.07 <0.07 <0.05 0.40 <0.02 0.12	0.11 <0.07 1.8 <0.05 <0.05 <0.02	<0.03 <0.07 <0.07 <0.05 <0.05
<0.07 <0.07 <0.05 0.40 <0.02 0.12	<0.07 1.8 <0.05 <0.05 <0.02	<0.07 <0.07 <0.05 <0.05
<0.07 <0.05 0.40 <0.02 0.12	1.8 <0.05 <0.05 <0.02	<0.07 <0.05 <0.05 <0.02
<0.05 0.40 <0.02 0.12	<0.05 <0.05 <0.02	<0.05 <0.05 <0.02
0.40 <0.02 0.12	<0.05	<0.05 <0.02
<0.02	<0.02	<0.02
0.12		
	37	
<0.13		0.05
	<0.13	<0.13
<0.02	0.06	0.66
0.03	0.06	0.23
<0.02	<0.02	0.05
0.11	0,03	<0.02
<0.04	51	0.13
1	13	122
10.5	7.5	12.7
9 BOF 5/00	5 EAF Baghouse	16 Ladle furnoce
(Urprocessed)	dust U	6 Ladle furnoce
		dust Table A-6
Table A-4	Table A-5	Table A-6
	(0.04 1 10.5 (B) BOF S/aa (Urprocessed)	(0.04 51 1 13 10.5 7.5 (C) BOF S/aa (S) EAF Baghouse dust (Urprocessed) dust

^{1.} Test results relate only to the items tested.

Date: 09/11/00

la

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

0040

ATT: DR H O FOURIE

FAX:012 348 7436/TEL:348 9732

DI No :

4670 249an 1 denise_adams@sgsgroup.com

Date Received: 18/08/00

Description: ISCOR V/DBIJL (TCLP/ACID RAIN)

ANALYS	is.	07 BOF Second 3 DegDust TCLP	08 BOF Second 2 DegDust TCLP	09 BOF Second 1 DegDust. TCLP
4g	mg/l	<0.02	<0.02	<0,02
Al .	mg/l	3.7	2.3	2.5
As	mg/l	0.12	<0.02	0.03
Ва	mg/l	0.65	0.33	0.13
Cd	mg/l	<0.03	0.15	<0.03
Da	mg/l	<0.07	<0.07	e0,0
Or .	mg/l	<0.07	<0.07	6.9
Du	mg/l	<0.05	<0.05	<0.05
-e	mg/l	0.46	0.19	0.10
-lg	mg/l	<0.02	<0.02	<0.02
VIл	mg/l	0.02*	42*	0.11*
Ni	mg/l	<0.13	<0.13	<0.13
ъъ	mg/l	<0.02	0.02	0,03
Se	mg/l	0.07	0.04	0.18
ពី	mg/l	0.05	<0.02	0.03
V	mg/l	<0,02	<0.02	<0.02
Zn	mg/l	0,32*	126**	0,16*
Ξ.	mg/l	20	8	9
ÞΗ	fina	12.7	7.6	10.8
		7 BOF Bouhouse 2 Dust	(E) BOF Buahouse 3 Du	st & BOF Baghouse 1 Du
		Table A-7	Table 17-8	Table 17-9
-				
		-		Praft for discussion

^{1.} Test results relate only to the items tested.

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 To: OCKIE FOURIE TOXICOLOGISTS PTY

Telefax: +27 11 811 4670

SGS South Africa (Pty) Ltd

DI No :

4670 2492117enise_adams@sgsgroup.com

Date Received: 18/08/00

Description: ISCOR V/DBIJL (TCLP/ACID RAIN)

ANALY:	SIS	10 BOF Wet Scrub(1,2,3)Sd TCLP	11 BOF RHOB Dust TCLP	12 Contineous CasterV3 TCLP
\g	mg/l	<0.02	<0.02	<0.02
N	mg/l	1.6	2.6	<0.15
\s	mg/l	<0.02	0.03	<0.02
Ва	mg/l	0.47	0.17	0.32
Cd	mg/l	0.13	<0.03	0.20
;o	mg/l	<0.07	<0.07	<0.07
Cr Cr	mg/l	<0.07	4.6	<0.07
)u	mg/l	<0.05	<0.05	<0.05
e	mg/l	1.21g/l ,	1.1	931
łg	mg/l	<0.02	<0.02	<0.02
Λn	mg/l	82	0.11	2.6
4i	mg/l	<0.13	<0.13	<0.13
Pb Pb	mg/l	0.11	<0.02	0.07
Se	mg/l	<0.02	0.12	<0.02
7	mg/l	0.02	0.03	0.05
/	mg/l	0.04	<0.02	0.02
.n	mg/l	0.59	0.04	0.14
_	mg/l	<0.1	0.2	0.2
Н	final	6.2	11,6	6.2
		BOF Srid	M RHOB Bookouse	(B) Contineous Cost
			M RHOB Bughouse	V3 Sludge
		TABLE A-23		Table A-10
		7 4622 11 20		7,3,5,7,
_			D:	afaior discussion
			4	Oscardior IV

^{1.} Test results relate only to the items tested.

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8

Telefax: + 27 11 811 4670 4670 2481: 17 denise_adams@sgsgroup.com

Date Received: 18/08/00

DI No :

Description: ISCOR V/DBIJL (TCLP/ACID RAIN)

Page: 5 of 18

To:	OCKIE F	OURIE	TOX	COL	OG	STS	PTY
	POBOX						
	LYNNWC	OOD RI	DGE				
	0040		01101				
	ATT: DR FAX:012				48 O	799	

ANALYSIS	3	13 KCL Dust sinter gravel TCLP	14 Sinter Dust AG TCLP	15 Sinter Dust BG TCLP
Ag	mg/l	<0.02	<0.02	<0.02
Al	mg/l	10	2.4	2.5
As	mg/l	0.02	0.03	0.02
Ва	mg/l	0.40	0.73	0.82
Cd	mg/l	0.07	<0,03	<0,03
15	mg/l	<0.07	<0.07	<0.07
Cr Cr	mg/l	<0.07	<0.07	<0.07
Cu	mg/l	<0.05	<0.05	<0.05
-e	mg/l	7.9	0.55	<0.05
Нg	mg/l	<0.02	<0.02	<0.02
٧n	mg/l	35	0.04	0.01
Νi	mg/I	<0.13	<0.13	<0.13
∂.p	mg/l	1.5	<0.02	<0.02
Se	mg/l	0,05	<0.02	0.03
Гі	mg/l	<0.02	0.07	0.03
/	mg/l	<0.02	0.07	0,05
Zn	mg/l	22	0.06	<0.04
÷.	mg/l	3	<0.1	0.3
ьН	final	5,5	5.4	9.9
3		B KCL Dust	(4) Sinter A5 100	B SINTER BS 100
 -			19 Sinter A5 100 Dust	DUST
			Table 17-11	Table 17-121
	··			Tall for discussion COSIDENTIAL Sesearch for IVS

^{1.} Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

3. Issued in accordance with standard terms and conditions

Date: 09/11/00

of property

On

CERTIFICATE OF ANALYSIS

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

0040

ATT: DR H O FOURIE

FAX:012 348 7436/TEL:348 9732

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No:

4670 **2490**E.1Genise_adams@sgsgroup.com

Date Received: 18/08/00

Description:

ISCOR V/DBIJL (TCLP/ACID RAIN)

Page: 6 of 18

As mg Ba mg Cd mg	η/I 2 η/I <0.0	.6	<0.02 2.1 <0.02		<0.02 7.3 <0.02
As mg	η/I <0.0	02	<0.02	*	
Ba mg	0.4				<0.02
Cd mg		11	4.0		
	<0.0		1.0		0.92
		13	<0.03		<0.03
o mg	0.0>	77	<0.07		<0.07
Cr mg	0.0)7	<0.07		<0.07
Cu mg	9/1 <0.0)5	<0.05		<0.05
Fe mg	yl 0.1	17	<0.05		3.0
Hg mg	y/I <0.0	12	<0.02		<0.02
Mn mg)/1 2	22	0.09		24
Ni mg	s/I <0.1	3	<0.13		<0.13
Pb mg	0.0)2	0.06		0.08
Se mg	0.0>	12	<0.02		<0.02
Ti mg	0.0	13	<0.02		<0.02
V mg	// <0.0	12	0.11		<0.02
Zn mg	y/I 0.1	1	0.12		5.7
F- mg	n/1 D.	.2	0.3		2
pH fina	al 6.	.2	8.9		5.7
<i>j</i>	13 Sinter	CS 100 (13	BF C DUS:	T (18) K	SF D DUST
	DUST				
	Tabl	e 17-13	Table A	-14	Table A-15

^{1.} Test results relate only to the items tested.

Date: 09/11/00

dobuy

On

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tet: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE 0040

ATT: DR H O FOURIE

4670 247an Tenise_adams@sgsgroup.com DI No:

Date Received: 18/08/00

ISCOR V/DBIJL (TCLP/ACID RAIN) Description:

NALYS	IS	19 BF C Wet Scrubber Slud TCLP	20 BF Prime Granular Slag TCLP	21 BF Degraded Gran Slag TCLP
\g	mg/l	<0.02	<0,02	<0.02
J	mg/l	45	27	22
s	mg/l	<0.02	<0.02	<0.02
Ва	mg/l	0.09	3.5	1,2
d	mg/l	0,06	<0.03	<0.03
lo .	mg/l	<0.07	<0.07	<0.07
Cr Cr	mg/l	<0.07	<0.07	<0.07
Du	mg/l	<0.05	<0.05	<0.05
e	mg/l	29	83	12
-lg	mg/l	<0.02	<0.02	<0.02
Λ'n	mg/l	65	36	7.8
Ni -	mg/l	<0,13	<0.13	<0.13
°5	mg/l	1.5	0.05	<0.02
Se	mg/t	<0.02	<0.02	<0.02
Ti	mg/l	<0.02	0.09	0,18
/	mg/l	<0.02	0.04	0.02
Zn	mg/l	163	0.23	0.10
F-	mg/l	0.8	0.2	0.2
эҢ	final	5.0	5,5	5.2 OFF SRIS
		19 BF Studge	55 BF PRIME Exerculated Stag	52 OFF CRITORIO GROWLIASCOL Slag. VTable 17-18
		V	Examulated Slag	GRany lated
			J	5/09.
		Table A-16	Tuble A-17	VTable 17-18
			l li	104
<u>.</u>				discussion
			<u></u>	Pascarch for IVS

^{1.} Test results relate only to the items tested.

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No :

4670 2391.17enise_adams@sgsgroup.com

Date Received: 18/08/00

Description:

ISCOR V/DBIJL (TCLP/ACID RAIN)

NALY	S IS	25 ESP Dust TCLP	26 DR Wet Scrubber Mud TCLP	27 Coke Oven Semable PitchTCLP		
Ag	mg/l	<0.02	<0.02	<0.02		
41	mg/l	2.5	0.63	1.2		
Ąs	mg/l	<0.02	<0.02	<0.02		
Ba	mg/l	0.49	0.98	0.34		
Cd	mg/l	<0,03	<0.03	<0.03		
5	mg/l	<0.07	<0.07	<0.07		
Cr	mg/l	<0.07	<0.07	<0.07		
Cu	mg/l	<0.05	<0.05	<0.05		
Fe	mg/l	<0.05	<0.05	2.6		
Нд	mg/l	<0.02	<0.02	<0.02		
Mn	mg/l	23	4.9	0.56		
Ni	mg/l	<0.13	<0.13	<0.13		
Pb	mg/l	<0.02	0.02	0.02		
Se	mg/l	<0.02	<0.02	<0.02		
Ti	mg/l	<0.02	<0.02	<0.02		
V	mg/l	<0.02	<0.02	<0.02		
Zn	mg/l	0.08	0.06	1.4		
F-	mg/l	0.3	0.2	0.4		
ηΗ	final	6.0	6.9	6.9		
		Q3 DR PRODUCT DUS	1 (25 DR WET SCRUBBER	A COKE OVEN		
			129 DR WET SCRUBBER	SEMABLE PITCH		
		Table 17-19	Table A-20			
			D	aft for discussion		
				esearch for IVS		

^{1.} Test results relate only to the items tested.

Date: 09/11/00

dobuy.

An

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY
P O BOX 73179

P O BOX 73179 LYNNWOOD RIDGE

0040

ATT: DR H O FOURIE

FAX:012 348 7436/TEL:348 9732

DI No: 4670 24901:17enise_adams@sgsgroup.com

Date Received: 18/08/00

Description: ISCOR V/DBIJL (TCLP/ACID RAIN)

Page : 9 of 18

ANALYSIS	3	29 Castiron Cyclone Dust TCLP	28 Arc Furnace Slag Hck85 TCLP	30 DR Cyclone Dust TCLP
Ag	mg/l	<0.02	<0.02	<0.02
Al s	mg/l	5.2	36	4.0
A.s	mg/l	<0.02	0.02	<0.02
За	mg/l	0.41	1.3	1.0
Cd	mg/l	<0.03	<0.03	<0.03
2	mg/l	<0.07	<0.07	<0.07
Or	mg/l	<0.07	<0.07	<0.07
Du	mg/l	<0.05	<0.05	<0,05
Fe	mg/l	20	16	4.0
Hg	mg/l	<0.02	<0.02	<0.02
Mn	mg/l	21	60	19
Nî	mg/l	0.16	<0.13	<0.13
Pb	mg/l	<0.02	0.06	<0.02
Se	mg/l	<0.02	<0.02	<0,02
Ti	mg/l	<0.02	0.12	<0.02
V	mg/l	<0.02	0.03	<0.02
Zn	mg/l	0.2B	0.06	0.30
F+	mg/l	0.6	0.2	0.1
nH	final	5,4	N6 4.9	4.6
		29) FOUNDRY CYCLONE DUST	(28) EAF Slag	30 DR Row Moteria, Dust
		Table 17-22	Table A-21	TABLE A-24

^{1.} Test results relate only to the items tested.

_ dobu:

On

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY P O BOX 73179 LYNNWOOD RIDGE 0040

Date Received: 18/08/00

DI No :

ATT: DR H O FOURIE

ISCOR V/DBIJL (TCLP/ACID RAIN) Description:

FAX-012 348 7436/TFL -348 9732

ANALYSIS		A01 Flow slag (fine)Bist AR	A02 Flow slag(coarse)Blst AR	A03 BOF Slag with Stilphur AR		
\g	mg/l	<0.02	<0.02	<0.02		
NI -	mg/l	0.52	0,25	. 3.3		
\s	mg/l	<0.02	<0.02	<0.02		
Ва	mg/l	0.18	0.42	0.06		
Cd	mg/l	<0.03	<0,03	<0.03		
0	mg/l	<0.07	<0.07	<0.07		
Dr .	mg/l	<0.07	<0.07	<0.07		
Du	mg/l	<0.05	<0.05	<0.05		
-e	mg/l	0.50	0.68	0.50		
-ig	mg/l	<0.02	<0.02	<0.02		
vin	mg/l	1.2	2.5	0.10		
Vi	mg/l	<0.13	<0.13	<0.13		
⊃b	mg/I	<0.02	<0.02	0.02		
Se	mg/l	<0.02	<0.02	<0.02		
Γi	mg/l	<0.02	<0.02	<0.02		
/	mg/l	<0.02	0.07	<0.02		
Zn	mg/l	0.96	<0.04	<0.04		
-	mg/l	0.5	0.3	1.7		
эН	final	7.2	7.6	11.3		
		n BOF Slag (Fine)	3 BOF SLAS/COURSE	B DESULPHURISATI		
			(3) BOF SLAS/COURSE	ELAG		
_		Table A-1	Table A-2	Table 17-3		
	, FE	7				
			To.	E		
			du' 8	li ior discussion Oi discussion		
			17	Search for IVS		
				4		

^{1.} Test results relate only to the items tested.

^{2.} This report shall not be reproduced except in full without the written approval of the

Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No:

4670 2390:17 enise_adams@sgsgroup.com

Date Received: 18/08/00

Description:

ISCOR V/DBIJL (TCLP/ACID RAIN)

ANALYSIS		A04 BOF Slag without Sulp. AR	A05 EAF Baghouse Dust AR	A06 Ladle Fur 1&2 BagDust: AR		
\g	mg/l	<0.02	<0.02	<0.02		
AI.	mg/l	0.34	<0.15	1,9		
As	mg/l	<0.02	0.09	0.04		
Ва	mg/I	0.09	0.04	0.27		
Cd	mg/l	<0,03	<0.03	<0.03		
70	mg/l	<0.07	<0.07	<0.07		
Or	mg/l	<0.07	2.8	<0.07		
Cu	mg/l	<0.05	<0.05	<0.05		
e	mg/l	0.33	0.21	0.09		
Нg	mg/I	<0.02	<0.02	<0.02		
Mn	mg/l	0.37	0.02	0.03		
Ni	mg/l	<0.13	<0.13	<0.13		
25	mg/l	<0.02	<0.02	0,54		
Se	mg/l	<0.02	0.02	0,10		
Ti	mg/l	<0.02	<0.02	<0.02		
V	mg/l	0,07	0.17	<0.02		
Zn	mg/l	<0.04	<0.04	<0.04		
F-	mg/l	0.1	0.1	8.0		
ЭΗ	final	7.7	10.6	12.8		
		(3) BOF Slay (Unproces	S EAF Bughause Dust	D LADLE FULHOLD 182 Boghouse Bust		
				182 Boghoust		
		Table A-4	Table 17-5	Bust		
				Tuble 17-6		
			Dr	aft for discussion		
				esearch for ive		

^{1.} Test results relate only to the items tested.

Date: 09/11/00

John

_ Cu

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8

Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No: 4670 2290 Tenise_adams@sgsgroup.com

Date Received: 18/08/00

Description: ISCOR V/DBIJL (TCLP/ACID RAIN)

ANALYSIS		A07 BOF Second 3 DegDust AR	A08 BOF Second 2 DegDust AR	A09 BOF Second 1 DegDust AR		
Ag	mg/l	<0.02	<0.02	<0.02		
41	mg/l	1.7	4.2	1.3		
As	mg/l	0.04	<0.02	<0.02		
Ва	mg/l	0,35	0.11	0.07		
Cd	mg/l	<0.03	<0.03	<0.03		
`.o	mg/l	< 9.07	<0.07	<0.07		
Cr	mg/l	<0.07	<0.07	7.3		
Cu	mg/l	<0.05	<0.05	<0.05		
e	mg/l	0.24	0.94	0.21		
ig	mg/l	<0.02	<0.02	<0.02		
<i>i</i> n	mg/l	<0.01	<0.01	0.32		
Vi.	mg/l	<0.13	<0.13	<0.13		
°b	mg/l	<0.02	0.09	0.06		
Se .	mg/l	<0.02	<0.02	<0.02		
FI	mg/l	<0.02	<0.02	<0.02		
V	mg/l	<0,02	<0.02	<0.02		
Zn	mg/l	<0.04	0.45	<0.04		
-	mg/l	7.7	3.6	8.3		
ьН	final	12.7	12.0	12.6		
		7) BOF Baghause	3 BOF Baghause	1 Duet		
<u> </u>		2 DustV	3 Dusq	1 Duet		
	-	Table A.7	Table A-8	Table A-9		
			Des			

^{1.} Test results relate only to the items tested.

dobry

(the

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No:

4670 **2499**0.1Genise_adams@sgsgroup.com

Date Received: 18/08/00

Description:

ISCOR V/DBIJL (TCLP/ACID RAIN)

ANALYS	is	A10 BOF Wet Scrub(1	2,3)Sd AR	A11 B	OF RHOB Du	st AR		A12 C	ontineous Caster\	/3 AR
A.g	mg/l <0.02			<0.02			<0.02			
٩.١	mg/I	0,17			19		<0.15			
As	mg/l	<0.02			<0.02	!			<0.02	
Ва	mg/l	0.10			0.09	1		0,13		
Cđ	mg/l	<0.03			<0.03			<0.03		
ð	mg/l	<0,07			<0.07	,		<0.07		
Or	mg/l	<0.07			6.6			<0.07		
Du .	mg/l	<0,05			<0.05	;			<0.05	
e	mg/l	0.44			0.10)			171	
fg	mg/l	<0,02			<0.02	2			<0.02	
VIл	mg/l	0.20			0.05	5			0.24	
vi	mg/l	<0,13			<0.13	3			<0.13	
⊃ ₅	mg/l	<0.02			<0.02			0.04		
Se Se	mg/l	<0.02			<0.02			<0.02		
fi	mg/l	<0.02			<0.02				<0.02	
V	mg/l	<0.02		0.00		3			<0.02	
Zn	mg/l	<0.04			<0.04			<0.04		
·.	mg/l	0.4			25				<0.1	
ЭН	final	9.0			12.3				6.7	
1		10 BOF	SZID	(1)	RHOB	Bay.	house	(12)	Contine	ous Casi
				-	Dust	Ú			Contine V3 Stud	due
		TABLE	17-23						Table	A-10
			•				r=			
							1770	11. 1		sslon
							1	411	. J. L. E. S	2.0
					 -			15 000		IVS

^{1.} Test results relate only to the items tested.

Date: 09/11/00

Jobun.

En

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3:} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA

Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No :

24901.17 enise_adams@sgsgroup.com

Date Received: 18/08/00

ANALYSIS		A13 KCL Dust sinter gravel AR	A14 Sinter Dust AG AR	Page : 14 of 18 A15 Sinter Dust BG AR		
Ag	mg/l	<0.02	<0.02	<0.02		
d	mg/l	1.0	0.84	1.0		
s	mg/l	<0.02	<0.02	<0.02		
Ва	mg/l	0.20	0.28	0.60		
Cd	mg/l	<0.03	<0.03	<0.03		
.0	mg/l	<0.07	<0.07	<0.07		
भ	mg/l	<0.07	<0.07	<0.07		
Ou .	mg/l	<0.05	<0.05	<0.05		
=e	mg/l	0.14	0.14	0,11		
łg	mg/l	<0.02	<0.02	<0.02		
VIn	mg/l	4.6	0.03	<0.01		
Ni	mg/l	<0.13	<0.13	<0.13		
Pb Pb	mg/l	0.03	<0.02	<0.02		
Se	mg/l	<0.02	<0.02	<0.02		
Гі	mg/l	<0.02	<0.02	<0.02		
/	mg/l	<0.02	<0.02	<0.02		
Zn	mg/l	8.2	<0.04	ôā‡□4 ∠0.04		
÷.	mg/l	8.0	1.9	2.6		
Н	final	6.7	12.0	12.5		
		13 KCL Dust	19 SINTER AS100	B SINTER BG 100		
	· · ·		Bust	Dust		
			Table A-11	Table A-12		
				for discussion		
			1 Med 5	Cartin yor IVS		

^{1.} Test results relate only to the items tested.

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

FAX:012 348 7435/TEL:348 9732

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No:

4670 2490,17 denise_adams@sgsgroup.com

Date Received: 18/08/00

Description:

ISCOR V/DBIJL (TCLP/ACID RAIN)

NALYSIS		A16 Sinter Dust CG AR	A17 BF C Cyclone Dust AR	A18 BF D Cyclone Dust+WetS AR
g	mg/l	<0.02	<0.02	<0.02
	mg/l	0.18	<0,15	0.34
1 5	mg/l	<0.02	<0.02	<0.02
3a	mg/l	0.20	D.12	0.25
d	mg/l	<0.03	<0.03	<0.03
'ס	mg/l	<0.07	<0.07	<0.07
r	mg/I	<0.07	<0.07	<0.07
u	mg/l	<0.05	<0.05	<0.05
e	mg/l	<0.05	0.06	0.90
ig	mg/l	<0.02	<0.02	<0.02
ln	mg/l	0.91	<0.15	4.9
li	mg/l	<0.13	<0,13	<0.13
ъ	mg/l	<0.02	<0,02	0.02
e	mg/l	<0.02	<0.02	<0.02
i	mg/l	<0.02	<0.02	<0.02
ı	mg/l	<0,02	0.10	<0.02
In	mg/l	<0,04	<0,04	0.20
-	mg/l	<0.1	<0.1	3.9
H	final	6.9	11.2	7.1
		10 SINTER 25, 100 DUST	M BF C Dust	TO BF D Dust
		Toble A-B	Table 17-14	Table A-15
			Dr	- isy discussion
			L EE	bearen for IVS

^{1.} Test results relate only to the items tested.

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

0040

ATT: DR H O FOURIE

FAX-012 348 7436/TEL -348 9732

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No :

2570 2700-17 E Mail: denise_adams@sgsgroup.com

Date Received: 18/08/00

Description: ISCOR V/DBIJL (TCLP/ACID RAIN)

Page: 16 of 18

ANALYS	is	A19 BF C Wet Scrubber Stud AR	A20 BF Prime Granular Slag AR	A21 BF Degraded Gran Slag AR
Ag	mg/l	<0.02	<0.02	<0.02
A.1	mg/l	<0.15	<0.15	0,29
Aş	mg/l	<0.02	<0.02	<0.02
Ba	mg/l	0.30	0.22	0.27
Cd	mg/l	<0.03	<0.03	<0.03
` o	mg/l	<0.07	<0.07	<0.07
Сг	mg/l	<0.07	<0.07	<0.07
Сп	mg/l	<0.05	<0.05	<0.05
-e	mg/l	0.08	10	2.7
-lg	mg/i	<0.02	<0.02	<0.02
Vln	mg/l	10	1.4	1.1
Vi	mg/l	<0.13	<0.13	<0.13
25	mg/l	<0.02	<0.02	<0.02
Se	mg/l	<0.02	<0.02	<0.02
П	mg/l	<0.02	<0.02	<0.02
/	mg/l	<0.02	<0.02	<0.02
Žn	mg/l	3.2	0.04	0.05
-	mg/l	7.9	0.9	0.8
Н	final	7.1	6.3	6.0
		1 BF Sludge	(50) BF Prime	1 BF OFF GRODE
		- U	Granuloked Slag	GRONULATE A Slad
		Table A-16	Table A-17	BIF OFF GRODE GRONULATE A Slad Table A-18
				rali for discussion
			Į.	Casearch for Ms

^{1.} Test results relate only to the items tested.

3. Issued in accordance with standard terms and conditions

Date: 09/11/00

O DEPARTMENTAL MANAGED

(Tu

^{2.} This report shall not be reproduced except in full without the written approval of the

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8

Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No :

4670 2390 17 Edwar: 10enise_adams@sgsgroup.com

Date Received: 18/08/00

Description: ISCOR V/DBIJL (TCLP/ACID RAIN)

Page: 17 of 18

Total Control	O OTELET P	OUDIE	PP-037	TO OUT	1000	LOST	mile.		V
101	OCKIE F	(11 11-11-	1111	11 31 31	- [-] [- 4	15.	- F	21.4	
10 .	UUI UL I	~ ~ I II I	1000	1000	the party of	1000	V.:1	3,18	

	DODOV	アライフハ							
	POBOX	1.1114							
	,								
			ALC: U.S.						
	LYNNWO		DOE						
	1 TIVIVEY	JULLER							
	time at a day of a day								
	- T 200 2 200 100 100 100 100 100 100 100 1								
	0040								
	.UU4U								
		The second secon		-					
	ATT- DR	· full : () land	31141						

FAX:012 348 7436/TEL:348 9732

ANALYSIS		A25 ESP Dust AR	A26 DR Wet Scrubber Mud AR	A27 Coke Oven Semable PitchAR
Ag	mg/l	<0.02	<0.02	<0.02
Al	mg/l	0.28	<0.15	<0.15
As	mg/l	<0.02	<0.02	<0.02
Ва	mg/l	0.18	0.19	0.10
Cd	mg/l	<0.03	<0.03	<0.03
7.0	mg/l	<0.07	<0.07	<0.07
Cr	mg/l	<0.07	<0.07	<0.07
Cu	mg/l	<0.05	<0.05	<0.05
Fe	mg/l	0.09	0.06	0.22
Нд	mg/l	<0.02	<0.02	<0.02
Mn	mg/l	0.04	0.07	0.25
Ni	mg/l	<0.13	<0.13	<0.13
Pb	mg/l	<0.02	<0.02	0.02
Se	mg/l	<0.02	<0.02	<0.02
Ti	mg/l	<0.02	<0.02	<0.02
٧	mg/l	<0.02	<0.02	<0.02
Zn	mg/l	0.06	<0.04	0.11
F-	mg/l	0.4	<0.1	0.8
рН	final	9.4	8.9	4.9
		23 Un PLOQUET OUST	1261 DR Wet Scrubber	69 COKE OVEN
			DR Wet Scrubber MUD	SEMARLE PITCH
		Table 17-19	Table 17-20	
			<u></u>	Pesearra en 198
NOTE: *	Results confi	rmed Results amended in his certifica	l ite supersedes all previous documents b	L

^{1.} Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

3. Issued in accordance with standard terms and conditions

Date : 09/11/00

denn.

Gu

To: OCKIE FOURIE TOXICOLOGISTS PTY

PO BOX 73179 LYNNWOOD RIDGE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No :

4670 24701:14enise_adams@sgsgroup.com

Date Received: 18/08/00

NALYS	SIS	A28 Arc Furnace Slag Hck85 AR	A29 Castiron Cyclone Dust AR	A30 DR Cyclone Dust AR
\g	mg/l	<0.02	<0.02	<0.02
AI .	mg/l	<0.15	0.35	<0.15
\s	mg/l	<0.02	<0.02	<0.02
Ва	mg/l	0.18	0.14	0.33
Dd	mg/l	<0.03	<0.03	<0.03
, o	mg/l	<0.07	<0.07	<0.07
Or	mg/l	<0.07	<0.07	<0.07
Cu	mg/l	<0.05	<0.05	<0.05
e	mg/l	0.06	0.89	<0.05
-lg	mg/l	<0.02	<0.02	<0.02
Λn	mg/l	2.2	0.58	1.1
۸i	mg/l	<0.13	<0.13	<0.13
²b	mg/l	<0.02	<0.02	<0.02
Se .	mg/l	<0.02	<0.02	<0.02
i	mg/l	<0.02	<0.02	<0.02
/	mg/l	<0.02	<0.02	<0.02
Zn	mg/l	<0.04	0.04	0.04
-	mg/l	<0.1	0.57	0.1
Н	final	6,1	6.1	6.2
		BO EAF Slag	DUST TABLE 17-22	GO DR ROW Makrie
		4	D957	Dust
		TABLE 19-21	TABLE FI-22	TABLE A-24
			Dra	ft for discussion Charles for the

^{1.} Test results relate only to the items tested.

Date: 09/11/00

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O 8ox 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY
P O BOX 73179

LYNNWOOD RIDGE

0040 ATT: DR H O FOURIE

FAX-012 348 7436/TEL -348 9732

DI No: 2809Z denise_adams@sgsgroup.com

Date Received: 03/11/00

Description: WASTE STREAMS (HEAD)

NALYSIS		1 VAAL DAM SLUDGE	2 DR - 1MM	3 DR + 1MM
√g	ppm	<10	<10	<10
N.	%	10.8	5.43	5.24
\s	, bbw	32	17	26
Ва	ppm	357	360	443
Cd	ppm	6.9	5.6	8.6
Сь	ppm	14	5.5	6.7
Cr Cr	ppm	148	38	98
Du	ppm	35	6.9	8.0
-e	%	5.72	5.91	7.80
	ppm	<5.0	<5.0	<5.0
Мп	%	572ppm	0.12	0.18
VI	ppm	<66	<66	<66
РЬ	ppm	112	26	43
Se	ppm	<5.0	<5.0	<5.0
Tì	ppm	3902	2642	2820
V	ppm	73	<41	<41
Zn	ppm	100	13	18
-	mg/kg	14	160	177
		TABLE A-25	TABLE A-26	TABLE A.27
			Drag	
			Ras	

¹ Test results relate only to the items tested.

(debuy

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

4670

DINo:

2809Z denise_adams@sgsgroup.com

Date Received: 03/11/00

Description:

WASTE STREAMS (HEAD)

ANALYSIS		4 DR ESP OVEN DUST	5 BOF LADLE NO 2	6 BOF MUD
Ag	ppm	<10	136	<10
Ąl	%	4.15	1.31	1.16
As	ppm	74	21	46
Ba	ppm	656	34	54
Cd	ppm	25	6.1	22
Co	ppm	15	7.8	22
Or	ppm	57	1.22%	210
Cu	ppm	17	27	42
e	%	29.2*	5.60	55.4*
Нд	ppm	<5.0	<5.0	<5.0
۷In	%	454ppm	16.2*	1.09
Ni	ppm	<65	<66	<66
25	ppm	49	97	48
Se	ppm	<5.0	<5.0	<5.0
Ti	ppm	3233	320	700
V	ppm	<41	74	<41
Żn	ppm	26	426	5508
F-	mg/kg	313	47115	411
				TABLE A-28
				Drug for discussion
				the earch for IVS

^{1.} Test results relate only to the items tested.

John

O-

Date: 22/01/01

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8

Telefax: +27 11 811 4670

DI No :

26097 E Wall. denise_adams@sgsgroup.com

Date Received: 03/11/00

WASTE STREAMS (HEAD) Description:

ANALYSIS		7 HOC CAST FLOOR DUST	8 BOF PAN OOND2 GROF STOF	
Ag	ppm	<10	<10	
Ņ	9/4	0.18	12,3	
As	ppm	42	33	_
За	ppm_	21	45	
Dd	ppm	19	5.8	
26	ppm	19	5.8	
Cr 10	ppm	119	0.33%	
Du	bbw	22	12	
Fe	%	64.8*	14.6*	
Нд	ppm	<5.0	<5.0	
Mn	%	0.84	5.21	
Ni	ppm	<66	<66	
Pb	ppm	<18	99	
Se	ppm	<5.0	<5.0	
Ťi	ppm	396	1552	
V	ppm	<41	279	
Zn	ppm	2268	55	
F-	mg/kg	566	3421	
			lo lo	rifft for discussion
				Research for IVS
			i i i i i i i i i i i i i i i i i i i	

1. Test results relate only to the items tested.

Date: 22/01/01

2. This report shall not be reproduced except in full without the written approval of the

Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY P O BOX 73179 LYNNWOOD RIDGE 0040

2409 17 genise_adams@sgsgroup.com Date Received: 03/11/00

DI No:

Description:

ATT: DR H O FOURIE

WASTE STREAMS (TCLP/AR)

FAX:012 348 7436/TEL:348 9732

NALYSIS		01 VAAL DAM SLUDGE TCLP	02 DR -1MM TCLP	03 DR +1MM TCLP
\g	mg/l	<0.02	<0.02	<0.02
Al	mg/l	<0.15	2.1	2.9
\s	mg/l	<0.02	<0.02	<0.02
3a	mg/l	0.84	0.61	0.90
Cd C	mg/l	<0.03	<0.03	<0.03
Co	mg/l	<0.07	<0.07	<0.07
Or .	mg/l	<0.07	<0.07	<0.07
Du	mg/I	<0.05	<0.05	<0.05
е	mg/l	<0.05	39	0.74
łg	mg/l	<0.02	<0.02	<0.02
Λn	mg/l	0.61	15	0.12
Ví	mg/l	<0.13	<0.13	<0.13
Pb Pb	mg/l	0.05	<0.02	0,02
Se	mg/l	<0.02	0.03	0.07
ī	mg/l	<0.02	0.07	0.09
/	mg/l	<0.02	<0.02	<0.02
Zn	mg/l	0.12	<0.02	0.07
-	mg/l	<0.1	< 0, 1	0.16
ж	final	5.1	7.7	7.7
		TABLE A.25	TABLE A-26	TABLE 17-27
				t for discussion
				search for IVS

^{1.} Test results relate only to the items tested.

Date: 22/01/01

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY
P O BOX 73179
LYNNWOOD RIDGE

0040

ATT: DR H O FOURIE

FAX:012 348 7436/TEL:348 9732

DI No: 2809 17 Tenise_adams@sgsgroup.com

Date Received: 03/11/00

Description: WASTE STREAMS (TCLP/AR)

NALYSIS		04 DR ESP OVEN DUST TCLP	05 BOF LADLE NO 2 TCLP	06 BOF MUD TCLP
₹g	mg/l	<0.02	<0.02	<0.02
A.I	mg/l	0.70	3.3	1.9
As .	mg/I	0.04	<0.02	<0.02
3a	mg/l	0.96	0.49	0.67
Cd	mg/l	<0.03	<0.03	0.05
Co	mg/l	<0.07	<0.07	<0.07
Or .	mg/l	<0.07	0.68	<0.07
Cu	mg/l	<0.05	0.12	<0.05
e	mg/l	0.39	0.77	629
Нg	mg/l	<0.02	<0.02	<0.02
Vin	mg/l	2.6	0.27	54
Ąį	mg/l	<0.13	<0.13	<0.13
Pb	mg/l	<0.02	0.02	0.03
Se	mg/l	<0.02	0.21	<0.02
Ti .	mg/l	<0.02	0.08	0.07
/	mg/l	<0.02	<0.02	<0.02
Zn	mg/l	0.07	0.05	1.0
·.	mg/l	1.3	11	2.7
Н	final	6.7	12.2	5.6
				Toble A.28
				esearch for IVS
			1	William Will State William State Sta

^{1.} Test results relate only to the items tested.

Pate: 22/01/01

an

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY P O BOX 73179 LYNNWOOD RIDGE 0040

2809.17 E Mall: Tenise_adams@sgsgroup.com Date Received: 03/11/00

ATT: DR H O FOURIE

WASTE STREAMS (TCLP/AR)

Description:

DI No:

ANALYSIS		07 HOC CAST FLOOR DUST TCLP	08 BOF PAN OOND 2GROFSTOF TCLP	09 VAAL DAM SLUDGE AR	
Ag	mg/l	<0.02	<0.02	<0.02	
Ad	mg/l	12	37	<0.15	
45	mg/1	<0.02	<0.02	<0.02	
Ва	mg/l	0.26	0.33	0.21	
Cd	mg/l	0.04	<0.03	<0.03	
Co	mg/l	<0.07	<0.07	<0.07	
Or	mg/l	<0.07	0.07	<0.07	
Cu	mg/l	<0.05	<0.05	<0.05	
-e	mg:1	429	0.46	<0.05	
Hig	mg/l	<0.02	<0.02	<0.02	
Vin	mg/l	71	0.47	0.01	
Ni	mg/l	<0.13	<0.13	<0.13	
РЬ	mg/l	0.02	0.06	<0.02	
Se .	mg/l	<0.02	<0.02	<0.02	
Ti	mg/l	<0.02	<0.02	<0.02	
V	mg/l	<0.02	<0.02	<0.02	
Zn	mg/l	45	<0.04	<0.04	
-	mg/l	11	6	<0.1	
рH	final	5.4	10.3	6.3	
				TABLE A-25	
			D.		
				eacarch for (V)	

^{1.} Test results relate only to the items tested.

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

0040

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No:

4570 2809:17 E Mail: denise_adams@sgsgroup.com

Date Received: 03/11/00

Description:

WASTE STREAMS (TCLP/AR)

NALYSIS		10 DR -1MM AR	11 DR +1MM AR	12 DR ESPIOVEN DUST AR
\g	mg/l	<0.02	<0.02	<0.02
ĶĒ.	mg/l	0,28	0.60	<0.15
\s	mg/I	<0.02	<0.02	9.07
За	mg/l	0.26	0.23	0.33
d	mg/l	<0.03	<0.03	<0.03
Co	mg/I	<0.07	<0.07	<0.07
Or .	rng/I	<0.07	<0.07	<0.07
โน	mg/l	<0.05	<0.05	<0.05
e	mg/(0 14	<0.05	5.07
-lg	mg/l	<0,02	<0.02	<0.02
Δn	mg/i	0.20	0.01	0.06
Vi	rng/l	<0,13	<0.13	<0.13
Pb	mg/l	<0.02	<0.02	<0.02
e e	mg/I	<0.02	<0.02	<0.02
Ti .	mg/l	<0.02	<0.02	<0.02
/	mg/I	<0.02	<0.02	<0.02
2n	mg/l	<0.04	<0.04	<0.04
-	mg/l	<0.1	0.15	1.5
Н	final	7.9	12.0	8.5
		TARLE F-26	Table A-27	7,
			Des	

1. Test results relate only to the items tested.

Date: 22/01/01

2. This report shall not be reproduced except in full without the written approval of the

3. Issued in accordance with standard terms and conditions

To: OCKIE FOURIE TOXICOLOGISTS PTY

P O BOX 73179 LYNNWOOD RIDGE

ATT: DR H O FOURIE

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA

Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

DI No :

2670 2679.17 enise_adams@sgsgroup.com

Date Received: 03/11/00

Description:

WASTE STREAMS (TCLP/AR)

NALYSIS		13 BOF LADLE NO 2 AR	14 BOF MUD AR	15 HOC CAST FLOOR DUST AR
\ g	mg/l	<0.02	<0.02	<0.02
Ą	mg/l	0.86	<0.15	3.5
As .	mg/l	<0.02	<0.02	<0.02
За	mg/l	0,31	0.15	0.14
Cd	mg/l	<0.03	<0.03	<0.03
Co	mg/i	<0.07	<0.07	<0.07
Cr	rng/l	<0.07	<0.07	<0.07
Du -	mg/l	<0.05	<0.05	<0.05
-e	mg 1	<0.05	0.28	76
-lg	mg/l	<0.02	<0.02	<0.02
Мп	mg/l	0.11	0.04	69
Vi i	mg/l	<0.13	<0.13	<0.13
Pb	mg/l	<0.02	<0.02	0.03
Se	mg/l	D.04	<0.02	<0.02
Гі	mg/l	<0.02	<0.02	<0.02
/	mg/l	<0.02	<0.02	<0.02
Zn	mg/l	<0.04	<0.04	33
	mg/l	16	3.5	16
Н	final	12.6	9.3	6.2
			TABLE A-28	
				an for discussion
				esearch for iVS

^{1.} Test results relate only to the items tested.

domin

Con

Date: 22/01/01

^{2.} This report shall not be reproduced except in full without the written approval of the

^{3.} Issued in accordance with standard terms and conditions

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357, Springs, 1560 RSA Tel: +27 11 811 2280/8 Telefax: +27 11 811 4670

To: OCKIE FOURIE TOXICOLOGISTS PTY
P O BOX 73179

LYNNWOOD RIDGE

0040

ATT: DR H O FOURIE

FAX:012 348 7436/TEL:348 9732

DI No : 2809-1

2679-17 E Maii: Benise_adams@sgsgroup.com

Date Received: 03/11/00

Description: WASTE STREAMS (TCLP/AR)

Page: 6 of 5

ANALYSIS		16 BOF PAN COND 2GROFSTOF AR		
Ag	mg/l	<0.02		
Al	mg/l	0.49		
As	mg/l	<0.02		
Ва	mg/l	C .18		
Cđ	mg/i	<0.03		
Co	mg/l	<0.07		
Cr	mg/l	<6.07		
Cu	mg/l	<0.05		
Fe	mg/l	<0.05		
Нд	mg/l	<0.02		
Мл	mg/l	1,1		
Ni	mg/l	<0.13		
Pb	mg/l	<0.02		
Se	mg/l	D.02		
Ti	mg/l	<0.02		
v	mg/l	<0.02		
Zn	mg/l	<0.04		
F-	mg/l	9.2		
pН	final	7.5		
	_			
				551011
			100	Seaven for IVS

1. Test results relate only to the items tested.

2. This report shall not be reproduced except in full without the written approval of the

. Issued in accordance with standard terms and conditions

Date: 22/01/01

Gu

APPENDIX D

LABORATORY ANALYSIS: ORGANIC

ANALYTICAL REPORT

ACCREDITED LABORATORY T0114

P.O. Box 2357 Springs 1560, South Africa Tel.: +27 (11) 811 2280 Fax: +27 (11) 811 4670

E-mail: Martin Botha@sgsgroup.com

Representative: TOINETTE MARCUS Client name: SGS MINERAL SERVICES

Address: P.O. BOX 2357

SPRINGS

SGS reference No: 2846 Client reference No: TCLP Sample info: TCLP

SGS Sampling/Inspected:

No

Postal code: 1560

Tel.: 011 811 2280 Fax: 011 811 4670

Client Ref. Nr.

Receiving date: December 11, 2000 Report date: December 14, 2000

Nr. of samples: 8

Other Info.

Vaaldam Sludge

Page number:

Lab. No.	
00/10812	
00/10813	
00/10814	
00/10815	

2	DL 2809	TCLP	DR - 1mm	00/10813
3	DL 2809	TCLP	DR + 1 mm	00/10814
4	DL 2809	TCLP	DR ESP O/D	00/10815
5	DL 2809	TCLP	BOF Ladle No.2	00/10816
6	DL 2809	TCLP	BOF Mud	00/10817
7	DL 2809	TCLP	HOC CFD	00/10818
8	DL 2809	TCLP	BOF Pan Oond	00/10819
0				

TCLP

Sample Name

Analyses Performed:	Units:	Method Used	00.10812	00.10813	00.10814	00.10815	00:10816	00:10817	00/10818	00/10819
VOC's#	P/ND	APHA 6200*	ND	P	P	P	P	P	ND	P
PAH's#	P/ND	APHA 6440**	Р	Р	ND	Р	ND	ND	ND	Р
VOC's:	-					1				
Methyl Ethyl Ketone	mg-L	APHA 6200*		0.780	0.760					
Napthalene	mg·L	APHA 6200*	0.320							
Vinyl Chloride	mg/L	APHA 6200*		0.260	0.310	0.970	0.180	0.490		2.160
PAH's:										
Anthracene	mg/L	APHA 6440**	0.420	0.390		0.290				1.190
Napthalene	mg/L	APH.A 6440**	0.330							

Comments: Samples analysed on an As Received Basis * = Samples analysed by GC-ECD, LOD = 0.047µg/L ** = Samples analysed by HPLC-UV, LOD = 0.027µg/L *** = Samples analysed by GC-ECD, LOD = 0.580 µg/L # = Not Accredited RTF = Results To Follow, P = Present Positive, ND = None Detected, NA = Not Analysed, N/A = Not Applicable

This report is only valid for the samples analyzed.

This analytical report or part of it, shall not be reproduced without the written consent of the laboratory manager.

"This report is Issued by the company under its General Conditions for Inspection and Testing Services (Copy available on request).

The issuance of this report does not exonerate the buyers or sellers from exercising all their rights and discharging all their liabilities under the contract of sale. Statements to the contrary are not binding on the company. The companies responsibility under this report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement samples,

If drawn, will not be retained by the company for more than three months" "The Company accepts no responsibility for the confidentiality or security of E-prilled reports. An original signed copy is held by the company

and is available to the client on request"

Analyst responsible:

Laboratory Manager:

Martin Botha

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O 8ex 2357 Springs 1560

Republic of South Africa

Telephone: +27 11 811 2280/8 Telefax: +27 11 811 4670 E Mail: denise_adams@sgsgroup.com

OCKIE FOURIE TOXICOLOGISTS PTY P O BOX 73179 LYNNWOOD RIDGE 0040

ATT: DR H FOURIE FAX: 012 348 7436 DL NO: 2290-1

SAMPLE ID	BTEX compounds	PAH compounds			
Flow slag (fine) Bist	BDL	BDL			
Flow slag (coarse) Bist	BDL	BDL			
BOF slag with sulphur	BDL	BDL			
BOF slag without sulphur	BDL	BDL			
EAF Baghouse Dust	BDL	BDL			
Ladle Fur 1&2 BagDust	BDL	BDL			
BOF Second 3 DegDust	BDL	BDL			
BOF Second 2 DegDust	BDL	BDL			
BOF Second 1 DegDust	BDL	BDL			
BOF Wet Scrub (1,2,3) Sd	BDL	BDL			
BOF RHOB Dust	BDL	BDL			
Contineous Caster V3	BDL	BDL			
KCL Dust sinter gravel	BDL	BDL			
Sinter Dust AG	BDL	BDL			
Sinter Dust BG	BDL	BDL			
Sinter Dust CG	BDL	BDL			
BF C Cyclone Dust	BDL	BDL			
BF D Cyclone Dust+WetS	BDL	BDL			
BF C Wet Scrubber Slud	BDL	BDL			
BF Prme Granular Slag	BDL	BDL			
BF Degraded Gran \$lag	BDL	BDL			
ESP Dust	BDL	BDL			
DR Wet Scrubber Mud	BDL	BDL			
Coke Oven Semable Pitch	BDL	BDL			
Castiron Cyclone Dust	BDL	BOL .			
Arc Furnace Slag Hck 85	BDL	BDL			

Test results relate only to the items tested.

This report shall not be reproduced except in full without the written approval of the company

BDL

Issued in accordance with standard Jerms, and conditions printed overleaf.

Date: 18 October, 2000

Dr Cyclone Dust

AZ WANAGER

DIVISIONAL MANAGER

Draft for discussion Research for IVS

BDL

CERTIFICATE OF ANALYSIS

SGS South Africa (Pty) Ltd Reg. No.:05/32643/07 P O Box 2357 Springs 1560

Republic of South Africa
Telephone: +27 11 811 2280/8
Telefax: +27 11 811 4670
E Mail: denise adams@sgsgroup.com

OCKIE FOURIE TOXICOLOGISTS PTY P O BOX 73179 LYNNWOOD RIDGE 0040

ATT: DR H FOURIE

FAX: 012 348 7436

DL NO: 2290-1

Motes:

The presence of phenolics and organic acids was observed by the mass-spectrum library search. This is not an absolute certainty, but rather a good indication. Specifically phenol and cresols in Coke pitch, acetic acid in the Granular slag and pentane- and hexanediodic acid, dimethyl esterin Castiron Cyclone Dust and DR Cyclone Dust.

Results reported in parts per billion (ppb)

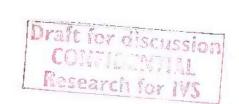
BDL – Below Detection Limit

Detection Limit – 5.0 ppb for aqueous samples

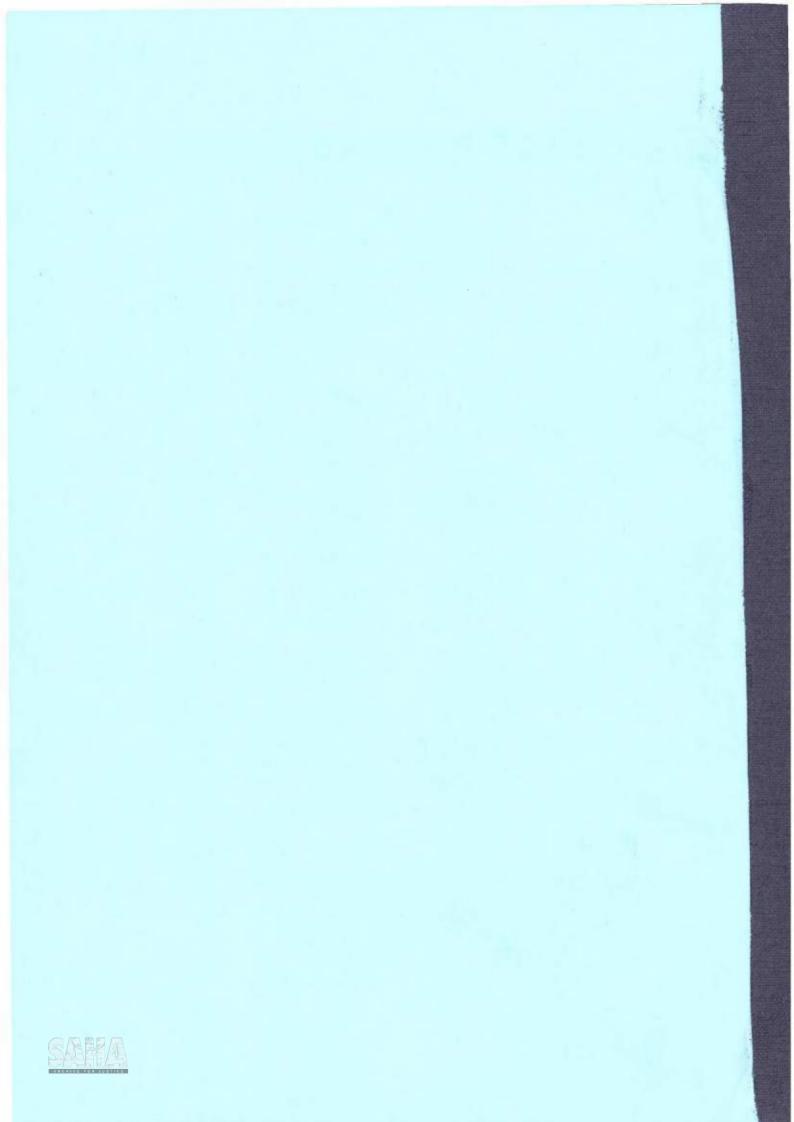
0.05 ppm for solid samples

Analysis done by Poltech

Test results relate only to the items tested.


This report shall not be reproduced except in full without the written approval of the company.

lesued in accordance with standard teams and conditions printed overleaf.


Date : 18 October, 2000

DEPARTMENTAL WANAGER

DIVISIONAL MANAGER

